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Abstract. We introduce a flexible class of kernel type estimators of a second order parameter

appearing in the multivariate extreme value framework. Such an estimator is crucial in order

to construct asymptotically unbiased estimators of dependence measures, as e.g. the stable tail

dependence function. We establish the asymptotic properties of this class of estimators under

suitable assumptions. The behaviour of some examples of kernel estimators is illustrated by a

simulation study in which they are also compared with a benchmark estimator of a second order

parameter recently introduced in the literature.
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1 Introduction

Measuring the strength of the dependence in the extremes is a challenging topic which has

received considerable attention in the recent multivariate extreme value literature. Several tools

can be used, either some coefficients of tail dependence or some functions, such as the Pickands
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dependence function or the spectral distribution function. In this paper, we focus on the stable

tail dependence function, denoted L, originally introduced by Huang (1992), which can be

defined as follows. For any arbitrary dimension d, let (X(1), ..., X(d)) be a random vector with

continuous marginal distribution functions (dfs) F1, ..., Fd. The stable tail dependence function

is defined for each xi ∈ R+, i = 1, ..., d, as

lim
t→∞

t
[
1− F

(
F←1 (1− t−1x1), ..., F←d (1− t−1xd)

)]
= L(x1, ..., xd) (1)

provided that this limit exists, where F is the distribution function of the vector (X(1), ..., X(d)),

and F←i is the generalised inverse of Fi, i.e. F←i (p) := inf{x : Fi(x) ≥ p}, p ∈ (0, 1), i = 1, . . . , d.

Let x := (x1, . . . , xd). Note that L is homogeneous of order one, that is L(ax) = aL(x), for all

x ∈ Rd+ and all a > 0.

Now, consider a sample of size n drawn from F and an intermediate sequence k = kn, i.e. k →∞

as n → ∞ with k/n → 0. Let us denote X
(j)
k,n the k−th order statistic among n realisations of

the margins X(j), j = 1, ..., d. The empirical estimator of L is then given by

L̂k(x) =
1

k

n∑
i=1

1l{X(1)
i ≥X

(1)
n−[kx1]+1,n

or ... or X
(d)
i ≥X

(d)
n−[kxd]+1,n

}.

Recently the poor performance of this empirical estimator in terms of bias has been emphasized

in the literature. This bias-issue is common in extreme value statistics, e.g. it is also present in

the univariate and the regression contexts, and generally it complicates the practical application

of extreme value methods. All the contributions dealing with bias reduction in the multivariate

framework (see Fougères et al., 2015, Beirlant et al., 2016, Escobar-Bach et al., 2016) require

the following second or third order conditions, depending on the type of asymptotic properties

that one wants to establish.

Second order condition: There exist a positive function α such that α(t)→ 0 as t→∞ and

a non null function M such that for all x with positive coordinates

lim
t→∞

1

α(t)

{
t
[
1− F

(
F←1 (1− t−1x1), ..., F←d (1− t−1xd)

)]
− L(x)

}
= M(x), (2)

uniformly on any [0, T ]d for T > 0.

The second order condition implies that the function α is regularly varying at infinity of index
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ρ ≤ 0, i.e. α(ty)/α(t)→ yρ as t→∞ for all y > 0, and M(x) is homogeneous of order 1− ρ.

Third order condition: There exist a positive function β such that β(t) → 0 as t → ∞ and

a non null function N such that for all x with positive coordinates

lim
t→∞

1

β(t)

{
t
[
1− F

(
F←1 (1− t−1x1), ..., F←d (1− t−1xd)

)]
− L(x)

α(t)
−M(x)

}
= N(x), (3)

uniformly on any [0, T ]d for T > 0. Also N is not a multiple of M .

It can be shown that the third order condition implies that β is regularly varying at infinity of

order ρ′ ≤ 0 and that N is homogeneous of order 1− ρ− ρ′.

The asymptotically unbiased estimators of the stable tail dependence function L proposed in

the abovementioned recent papers depend on the second order parameter ρ, which has to be

estimated from the sample. The problem of estimating second order parameters is also present

in the univariate framework, but in that context, several estimators have already been proposed

in the literature and they perform reasonably well in practice, although not very stable as a

function of the intermediate sequence k used to compute them. We refer for instance to Fraga

Alves et al. (2003), Ciuperca and Mercadier (2010) and Goegebeur et al. (2010), among others.

On the contrary, in the multivariate context this topic is still in its infancy. We are only aware

of the estimators proposed by Fougères et al. (2015) and Beirlant et al. (2016). However, these

papers are mainly focused on bias-corrected estimation of L, and the estimation of ρ is only

an obstacle to overcome in order to obtain the bias-correction. Thus, although these papers

introduce estimators for ρ, the performance of these estimators has not been studied in detail.

Until now, due to the difficulty of estimating this parameter ρ, it is often suggested in practice

to replace it by a canonical value like e.g. -1 (see Escobar-Bach et al., 2016). However, a

mis-specification of this parameter implies that from a theoretical perspective one loses the bias

correction. Thus, similarly to the univariate context, it is an important challenge to be able to

estimate ρ in the multivariate context. To reach this goal, we introduce in Section 2 a flexible

class of kernel estimators for ρ, for which we derive the asymptotic normality under suitable

assumptions, in particular the third order condition mentioned above. Our estimator depends on

some tuning parameters that we have to select. For some specific values of them, our estimator

encompasses the one proposed in Beirlant et al. (2016). In Section 3, the performance of our
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estimator is compared with a benchmark from the recent literature. All the proofs of the results

are postponed to the appendix.

2 Kernel estimator and asymptotic properties

Motivated by the homogeneity property of the function L we introduce the following scaled

estimator

L̂k,a(x) := a−1L̂k(ax)

for a positive parameter a. The basic building block for the ρ estimator will be the following

kernel statistic

L̃k(x;K, ξ) :=
1

k

k∑
j=1

K(aj)L̂
ξ
k,aj

(x)

where aj := j
k+1 , j = 1, ..., k, ξ ∈ N, and K is a function defined on [0, 1] which is positive and

such that
∫ 1
0 K(u)du = 1. This function is called a kernel function in the sequel.

As a first step in the development of the estimator we derive the weak limit of L̂k(x), when

properly normalised. Let {e1, . . . , ed} be the canonical basis vectors of Rd.

Theorem 1. Let X1, ...,Xn be independent random vectors in Rd with common joint df F and

continuous marginal dfs Fj, j = 1, ..., d. Assume that the third order condition (3) holds with

negative indices ρ and ρ′ and that the first order partial derivatives of L, say ∂jL, exist and that

∂jL is continuous on the set of points {x ∈ Rd+ : xj > 0}. Suppose further that the function

M is continuously differentiable and N continuous. Assuming that the intermediate sequence k

satisfies
√
kα(n/k)→∞ and

√
kα(n/k)β(n/k)→ λ1 ∈ R, we have

√
k
{
L̂k(x)− L(x)− α

(n
k

)
M(x)− α

(n
k

)
β
(n
k

)
N(x)

}
d−→ ZL(x)

in D([0, T ]d) for every T > 0, where

ZL(x) := WL(x)−
d∑
j=1

WL(xjej)∂jL(x),

with WL a continuous centered Gaussian process with covariance structure E[WL(x)WL(y)] =

µ{R(x) ∩ R(y)} where R(x) := {u ∈ Rd+ : there exists j such that 0 ≤ uj ≤ xj} and µ is the
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measure defined as µ {R(x)} := L(x).

Note that we assume
√
kα(n/k)β(n/k)→ λ1 ∈ R, while Fougères et al. (2015) took λ1 = 0. Our

assumption will allow us to study the estimation of ρ in a more general context. In particular

we can make the bias term explicit, unlike Fougères et al. (2015), where no information about

the bias of ρ is available.

Based on the result of Theorem 1 we can now establish the weak limit of the kernel statistic

L̃k(x;K, ξ). Let I(K, r) :=
∫ 1
0 K(u)u−rdu.

Theorem 2. Let K be a continuous kernel function satisfying
I (K, (ξ + 1)/2) <∞,

1
k

∑k
j=1K(aj) = 1 + o

(
1√
k

)
,

1
k

∑k
j=1K(aj)a

−ρ
j = I(K, ρ) + o

(
1√
k

)
.

Suppose that the conditions of Theorem 1 hold together with
√
kα2

(
n
k

)
→ λ2 ∈ R. Then, we

have

√
k
{
L̃k(x;K, ξ)− Lξ(x)− α

(n
k

)
ξLξ−1(x)M(x)I(K, ρ)− α

(n
k

)
β
(n
k

)
ξLξ−1(x)N(x)I(K, ρ+ ρ′)

−α2
(n
k

) ξ(ξ − 1)

2
Lξ−2(x)M2(x)I(K, 2ρ)

}
d−→ ξLξ−1(x)

∫ 1

0
K(u)

1

u
ZL(ux)du

in D([ε, T ]d) for every ε > 0 and T > ε.

Definition For (ξ1, ξ2) ∈ N× N, a, r ∈ (0, 1), let

ρ̃k(x;K, ξ1, ξ2) :=

(
1− 1

log r
log

∣∣∣∣∣∆̃k,a(rx;K, ξ1, ξ2)

∆̃k,a(x;K, ξ1, ξ2)

∣∣∣∣∣
)
∧ 0

where

∆̃k,a(x;K, ξ1, ξ2) :=

[
1

aξ1
L̃k(ax;K, ξ1)

] 1
ξ1

−
[
L̃k(x;K, ξ2)

] 1
ξ2 .

The weak convergence of this estimator for ρ is established in the next theorem.

Theorem 3. Assume the conditions of Theorem 2 hold, that the function M never vanishes
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except on the axes, and consider real numbers a and r both in (0, 1). Then we have

√
kα
(n
k

){
ρ̃k(x;K, ξ1, ξ2)− ρ+

I(K, ρ+ ρ′)

I(K, ρ)

N(x)

M(x)

a−ρ−ρ
′ − 1

a−ρ − 1

r−ρ
′ − 1

log r
β
(n
k

)
+

(
I(K, 2ρ)

I(K, ρ)
− I(K, ρ)

) ξ1−1
2 a−2ρ − ξ2−1

2

a−ρ − 1

M(x)

L(x)

r−ρ − 1

log r
α
(n
k

)}
d−→ − 1

(a−ρ − 1)M(x)I(K, ρ) log r

(
1
a

∫ 1
0 K(u)ZL(uarx)u du−

∫ 1
0 K(u)ZL(urx)u du

r1−ρ

−1

a

∫ 1

0
K(u)

ZL(uax)

u
du+

∫ 1

0
K(u)

ZL(ux)

u
du

)
,

in D([ε, T ]d), for every ε > 0 and T > ε.

Note that in the particular case where ξ1 = ξ2 = 1, we recover the estimator proposed by

Beirlant et al. (2016) but we provide its asymptotic normality in Theorem 3 under more general

assumptions which allow us to exhibit the bias of our estimator. Also, we provide here the result

in terms of weak convergence of a stochastic process in x, whereas Beirlant et al. (2016) only

provide a pointwise convergence result. Remark that our asymptotic limit does not depend on

the values of ξ1 and ξ2.

3 Simulation study

To assess the performance of our class of estimators in practice, we simulate B = 1000 samples

of size n = 1000 from several distributions originally proposed by Fougères et al. (2015) and

used in Beirlant et al. (2016). To keep the length of the paper reasonable, we only include the

following ones:

• the logistic model, for which L(x, y) = (x1/s + y1/s)s and ρ = −1. We set s = 1/3;

• the bivariate Pareto of type II model, called BPII(p), for which L(x, y) = x+y−(x−p+y−p)−1/p.

We set p = 4 which corresponds to ρ = −0.5;

• the bivariate Cauchy distribution, for which L(x, y) = (x2 + y2)1/2 and ρ = −2.

In this simulation study, we compare our new class of kernel estimators for ρ with the benchmark

estimator already proposed in the literature by Fougères et al. (2015) and defined as

ρ̂k(x) :=

(
1− 1

log r
log

∣∣∣∣∣∆̂k,a(rx)

∆̂k,a(x)

∣∣∣∣∣
)
∧ 0
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where ∆̂k,a(x) := a−1L̂k(ax)− L̂k(x), with advocated values r = a = 0.4 for practical use.

Our class of estimators depends on several tuning parameters that we have to select in practice.

An extensive simulation study leads us to the following conclusions:

• the performance of our estimator, whatever the distribution, is almost the same for all the

pairs of ξi, i = 1, 2, used. To keep the length of the paper under control, we only report the

results when (ξ1, ξ2) = (1, 1) (which coincides with the estimator introduced in Beirlant et al.,

2016) and (4, 4);

• concerning the kernel, we tried also different types of families, all satisfying the conditions of our

Theorem 2, but again we show only the results for the power kernel, Kτ (t) := (τ + 1)tτ1l{t∈[0,1]},

where I(Kτ , r) = 1+τ
1+τ−r and we set τ = 2 and 10;

• concerning a and r, as in Fougères et al. (2015), the value 0.4 for both parameters seems

overall best, although in some particular cases, a larger value, say 0.5, is better.

Figure 1 displays the results for the logistic and BPII(4) distributions, in case of the particular

choices a = r = 0.4, (ξ1, ξ2) = (1, 1) (first and third rows) or (4, 4) (second and fourth rows),

whereas Figure 2 shows similar plots for the bivariate Cauchy distribution in case a = r = 0.4

and 0.5 and the same pairs for (ξ1, ξ2). The estimates for ρ were calculated at x = (0.5, 0.5).

Also other values of x have been tried, but it turns out that the estimation results are not

very sensitive with respect to the choice of this position. Each time, our class of estimators is

computed with the power kernel with τ = 2 and 10. The left panel of the figures represents the

mean of the estimators over the B samples as a function of k, whereas the right panel is the

mean squared error (MSE), also as a function of k. On the left panel, the horizontal reference

line (solid black line) indicates the true value of ρ. Due to the high volatility of the estimator

ρ̂k, we follow the advices of Fougères et al. (2015) by drawing a horizontal line (solid grey line)

corresponding to the mean value computed at k = 990 to represent the performance of this

estimator. Since this mean value is sometimes far away from the true one, the corresponding

MSE may not appear on the right-hand side of the figures in view of the scale used. The values

τ = 2 or 10 seem to give always good results with a slightly better performance to τ = 10 for

some distributions. When ρ = −1, our estimator has almost no bias and is very stable as a

function of k. When ρ = −1/2 some bias appears, but this is expected since it is well-known in
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the extreme value literature, that bias occurs in case ρ ∈ (−1, 0], making estimation practically

difficult. Now if ρ < −1, a bias also appears, whatever the value of τ , though for large values

of k, which is the range to consider, the estimator gets close to the true value. This bias is

not usual but due to the value of the pair (a, r) which is not appropriate to that framework.

Indeed, as illustrated in Figure 2 for this distribution, a = r = 0.5 leads to less bias than in case

a = r = 0.4, but an MSE more or less at the same level. On the contrary, for distributions with

ρ = −1 the choice a = r = 0.5 leads to more bias and a larger MSE compared to a = r = 0.4.

This motivates why we essentially illustrate the performance of our estimator in case a = r = 0.4

which is overall the best choice.

To conclude, similarly to the univariate framework, no particular values of the tuning parameters

are best for the whole parameter space. This has been already observed by Fraga Alves et al.

(2003) and Goegebeur et al. (2010). However, on the contrary to the univariate context, our

class of estimators for ρ with the specific values of the parameters considered in this section seems

to have nice bias properties with rather stable sample paths as a function of k, which alleviates

the choice of k to some extent, and it outperforms the benchmark estimator, ρ̂k. Indeed, due to

the large variability of ρ̂k one has that ρ̃k is typically better in terms of MSE.

4 Appendix: Proofs of the results

Proof of Theorem 1. Let U
(j)
i , j = 1, ..., d, be uniform random variables defined as U

(j)
i :=

1− Fj(X(j)
i ) for j = 1, ..., d. Introduce now

Vk(x) :=
1

k

n∑
i=1

1l{U(1)
i ≤kx1/n or ... or U

(d)
i ≤kxd/n}

.

Then, we can use the following decomposition
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L̂k(x)− L(x)− α
(n
k

)
M(x)− α

(n
k

)
β
(n
k

)
N(x)

= Vk

(n
k
U

(1)
[kx1],n

, ...,
n

k
U

(d)
[kxd],n

)
− n

k

[
1− F

{
F←1

(
1− U (1)

[kx1],n

)
, ..., F←d

(
1− U (d)

[kxd],n

)}]
+
(n
k

[
1− F

{
F←1

(
1− U (1)

[kx1],n

)
, ..., F←d

(
1− U (d)

[kxd],n

)}]
− L

(n
k
U

(1)
[kx1],n

, ...,
n

k
U

(d)
[kxd],n

)
−α

(n
k

)
M
(n
k
U

(1)
[kx1],n

, ...,
n

k
U

(d)
[kxd],n

)
− α

(n
k

)
β
(n
k

)
N
(n
k
U

(1)
[kx1],n

, ...,
n

k
U

(d)
[kxd],n

))
+L

(n
k
U

(1)
[kx1],n

, ...,
n

k
U

(d)
[kxd],n

)
− L(x)

+α
(n
k

) [
M
(n
k
U

(1)
[kx1],n

, ...,
n

k
U

(d)
[kxd],n

)
−M(x)

]
+α

(n
k

)
β
(n
k

) [
N
(n
k
U

(1)
[kx1],n

, ...,
n

k
U

(d)
[kxd],n

)
−N(x)

]
=: A1,k(x) +A2,k(x) +A3,k(x) +A4,k(x) +A5,k(x).

We have to study each term separately. According to the proof of Proposition 1 in Fougères et

al. (2015), we have

√
kA1,k(x)

d−→ WL(x) (4)

√
kA3,k(x)

d−→ −
d∑
j=1

WL(xjej)∂jL(x) (5)

in D([0, T ]d) for every T > 0. Now according to the proof of Theorem 7.2.2 in de Haan and

Ferreira (2006), we have

sup
x∈[0,T ]

∣∣∣√k (n
k
U

(j)
[kx],n − x

)
+WL(xej)

∣∣∣ −→ 0 a.s. (6)

Under the assumptions on the function M , this implies that

sup
0≤x1,...,xd≤T

∣∣∣∣∣∣√k
{
M
(n
k
U

(1)
[kx1],n

, ...,
n

k
U

(d)
[kxd],n

)
−M(x)

}
+

d∑
j=1

WL(xjej)∂jM(x)

∣∣∣∣∣∣→ 0 a.s.

Consequently

sup
0≤x1,...,xd≤T

∣∣∣√kA4,k(x)
∣∣∣ P−→ 0. (7)

Similarly using the continuity of the function N and (6), we have

sup
0≤x1,...,xd≤T

∣∣∣N(x)−N
(n
k
U

(1)
[kx1],n

, ...,
n

k
U

(d)
[kxd],n

)∣∣∣→ 0 a.s.
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which entails that

sup
0≤x1,...,xd≤T

∣∣∣√kA5,k(x)
∣∣∣ −→ 0 a.s. (8)

under the assumption that
√
kα(nk )β(nk )→ λ1. The last term that we have to consider is A2,k(x).

According to the third order condition and (6), we have

√
kA2,k(x) = o

(√
k α
(n
k

)
β
(n
k

))
= o(1) a.s. (9)

uniformly on [0, T ]d. Combining (4), (5), (7), (8) and (9), Theorem 1 follows.

Proof of Theorem 2. From Theorem 1, and by using the Skorohod construction, we have

L̂k(x) = L(x) + α
(n
k

)
M(x) + α

(n
k

)
β
(n
k

)
N(x) +

ZL(x)√
k

+ o

(
1√
k

)
,

where the o-term is a.s. uniform on [0, T ]d. Using again the homogeneity of the functions

L,M,N we deduce that

L̂k,aj (x) = L(x) + α
(n
k

)
a−ρj M(x) + α

(n
k

)
β
(n
k

)
a−ρ−ρ

′

j N(x) +
1√
kaj

ZL(ajx) +
1

aj
o

(
1√
k

)
.

Now, by a Taylor series expansion, we have

1

k

k∑
j=1

K(aj)L̂
ξ
k,aj

(x) = Lξ(x)
1

k

k∑
j=1

K(aj) + α
(n
k

)
ξLξ−1(x)M(x)

1

k

k∑
j=1

K(aj)a
−ρ
j

+α
(n
k

)
β
(n
k

)
ξLξ−1(x)N(x)

1

k

k∑
j=1

K(aj)a
−ρ−ρ′
j

+
ξLξ−1(x)√

k

1

k

k∑
j=1

K(aj)
1

aj
ZL(ajx) +R(1)

n (x) +R(2)
n (x) + o

(
1√
k

)
,

where

R(1)
n (x) :=

ξ(ξ − 1)

2
Lξ−2(x)

1

k

k∑
j=1

K(aj)y
2
j ,

R(2)
n (x) :=

ξ(ξ − 1)(ξ − 2)

6

1

k

k∑
i=1

K(aj){L(x) + θyj}ξ−3y3j , with θ ∈ (0, 1),

yj := α
(n
k

)
a−ρj M(x) + α

(n
k

)
β
(n
k

)
a−ρ−ρ

′

j N(x) +
1√
kaj

ZL(ajx) +
1

aj
o

(
1√
k

)
.
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First we establish the convergence to zero of

∆k :=

∣∣∣∣∣∣1k
k∑
j=1

K(aj)
ZL(ajx)

aj
−
∫ 1

0
K(u)

ZL(ux)

u
du

∣∣∣∣∣∣ .
To this aim it is instructive to realise that {WL(ax)/

√
L(x); 0 ≤ a ≤ 1} is a Wiener process.

Using the fact that the sample paths of a Wiener process are a.s. Hölder continuous of order

γ < 1/2, and by Lévy’s global modulus of continuity, one has for any ε > 0, T > ε and

δ ∈ (0, 1/2) that

sup
x∈[ε,T ]d,(a,b)∈[0,1]2

∣∣∣∣WL(ax)√
L(x)

− WL(bx)√
L(x)

∣∣∣∣
|a− b|1/2−δ

≤ C a.s. , (10)

where C is a positive constant.

We have, with ãj being a value between aj and aj+1, j = 1, . . . , k, that

∆k ≤ 1

k + 1

k∑
j=1

∣∣∣∣K(aj)
ZL(ajx)

aj
−K(ãj)

ZL(ãjx)

ãj

∣∣∣∣+

∣∣∣∣∣
∫ 1/(k+1)

0
K(u)

ZL(ux)

u
du

∣∣∣∣∣
+

1

k + 1

∣∣∣∣∣∣1k
k∑
j=1

K(aj)
ZL(ajx)

aj

∣∣∣∣∣∣
=: T1 + T2 + T3.

Concerning T1, we easily establish

T1 ≤ 1

k + 1

k∑
j=1

K(aj)
1

aj
|ZL(ajx)− ZL(ãjx)|+ 1

k + 1

k∑
j=1

∣∣∣∣K(aj)
1

aj
−K(ãj)

1

ãj

∣∣∣∣ |ZL(ãjx)|

=: T1,1 + T1,2.

Now, by the definition of ZL(x) and using the fact that ∂iL(x) is homogeneous of order zero,

we obtain the inequality

T1,1 ≤ 1

k + 1

k∑
j=1

K(aj)
1

aj
|WL(ajx)−WL(ãjx)|+

d∑
i=1

∂iL(x)

k + 1

k∑
j=1

K(aj)
1

aj
|WL(ajxiei)−WL(ãjxiei)|

=: T1,1,1 + T1,1,2.

Using (10), we have for some small ι > 0,

T1,1,1 ≤
C̃

(k + 1)ι
1

k + 1

k∑
j=1

K(aj)a
−1/2−δ−ι
j ,

11



where C̃ > 0 is a constant, and hence we conclude T1,1,1 = o(1) a.s. uniformly in x ∈ [ε, T ]d.

Using the continuity of ∂iL(x), we obtain in the same way T1,1,2 = o(1) a.s. uniformly in

x ∈ [ε, T ]d.

For T1,2 we write

T1,2 ≤ 1

k + 1

k∑
j=1

K(aj)

∣∣∣∣ 1

aj
− 1

ãj

∣∣∣∣ |ZL(ãjx)|+ 1

k + 1

k∑
j=1

|K(aj)−K(ãj)|
1

ãj
|ZL(ãjx)|

=: T1,2,1 + T1,2,2.

Again using (10), and with arguments similar to those used for T1,1, we obtain T1,2,1 = o(1) a.s.

uniformly in x ∈ [ε, T ]d. Concerning T1,2,2, use the fact that K is uniformly continuous over

[0, 1] and obtain, for k large enough

T1,2,2 ≤
ω

k + 1

k∑
j=1

1

ãj
|ZL(ãjx)|,

where ω > 0 can be chosen arbitrary small, and hence, again using (10) we have T1,2,2 = o(1)

a.s. uniformly in x ∈ [ε, T ]d. Also T2 and T3 can be analysed in a similar way, and allow us to

conclude ∆k = o(1) a.s. uniformly in x ∈ [ε, T ]d as k →∞.

After tedious calculations one can establish, provided ξ ≥ 2,

R(1)
n (x) = α2

(n
k

) ξ(ξ − 1)

2
Lξ−2(x)M2(x)I(K, 2ρ) + oP

(
1√
k

)
,

where the oP term is uniform in x ∈ [ε, T ]d. Concerning R
(2)
n (x), the cases ξ = 1 and ξ = 2, are

trivial sinceR
(2)
n (x) is exactly zero. In case ξ = 3, some straightforward but tedious computations

lead to R
(2)
n (x) = oP

(
1√
k

)
, uniformly in x ∈ [ε, T ]d. Finally, if ξ ∈ N such that ξ > 3, then, for

n sufficiently large, we can use the following bound,

|L(x) + θyj |ξ−3 ≤ (L(x) + |yj |)ξ−3

≤ a
(3−ξ)/2
j

(
L(x) + α

(n
k

)
|M(x)|+ α

(n
k

)
β
(n
k

)
|N(x)|+ 2|ZL(x)|+ o(1)

)ξ−3
=: Ĉa

(3−ξ)/2
j ,

where Ĉ is independent from j and x, which allows us to deduce that

R(2)
n (x) ≤ Ĉ ξ(ξ − 1)(ξ − 2)

6

1

k

k∑
j=1

K(aj)a
(3−ξ)/2
j |yj |3 = oP

(
1√
k

)

12



uniformly in x ∈ [ε, T ]d. This achieves the proof of Theorem 2.

Proof of Theorem 3. The result can be established by using Theorem 2, the Skorohod repre-

sentation, the homogeneity of the functions L,M,N , (10), and several Taylor series expansions.
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Figure 1: Comparison between ρ̂k at k = 990 (horizontal grey solid line) and our power kernel

estimator with a = r = 0.4 in case of the logistic distribution (two first rows) and the BPII(4)

distribution (two last rows) with (ξ1, ξ2) = (1, 1) (first and third rows) and (4, 4) (second and

fourth rows), and τ = 2 (black solid line) and τ = 10 (black dashed line). All estimators are

computed at x = (0.5, 0.5).
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Figure 2: Bivariate Cauchy: ρ̂k at k = 990 (horizontal grey solid line) and our power kernel

estimator with (ξ1, ξ2) = (1, 1) (first row), (4, 4) (second row) for a = r = 0.4, whereas (ξ1, ξ2) =

(1, 1) (third row), (4, 4) (bottom row) for a = r = 0.5. For all the plots, τ = 2 (black solid line)

and τ = 10 (black dashed line). All estimators are computed at x = (0.5, 0.5).
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