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a b s t r a c t

A robust and asymptotically unbiased extreme quantile estimator is derived from a second
order Pareto-typemodel and its asymptotic properties are studiedunder suitable regularity
conditions. The finite sample properties of the proposed estimator are investigated with a
small simulation experiment.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In extreme value statistics, the estimation of extreme quantiles of a distribution function is a central topic. Indeed,
many important applications in climatology, finance, actuarial science, hydrology and geology, to name but a few, require
extrapolations outside the data range, and extreme value theory provides the only realistic framework for such an exercise.
In the present paperwe shall address this estimationproblem,with special focus on asymptotic unbiasedness and robustness
against outliers.

We consider the framework of Pareto-type distributions satisfying a second order condition. In particular, we assume
the following (see Beirlant et al., 2009). Let RVβ denote the class of the regularly varying functions at infinity with index β ,
i.e. Lebesgue measurable ultimately positive functions z satisfying limt→∞ z(tx)/z(t) = xβ for all x > 0.

Condition (R). Let γ > 0 and τ < 0 be constants. The distribution function F is such that x1/γ F̄(x) → C ∈ (0, ∞) as
x → ∞ and the function δ defined via

F̄(x) = Cx−1/γ (1 + γ −1δ(x)),

is ultimately nonzero, of constant sign and |δ| ∈ RVτ .
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Clearly, condition (R) implies that the tail quantile function U , defined as U(y) := inf{x : F(x) ≥ 1 − 1/y}, y > 1,
satisfies y−γU(y) → Cγ as y → ∞ and the function a implicitly defined by

U(y) = Cγ yγ (1 + a(y)) (1)

satisfies a(y) = δ(Cγ yγ )(1 + o(1)) as y → ∞, so |a| ∈ RVρ , with ρ = γ τ .
The second order condition (R) can be used to derive the so-called extended Pareto distribution, EPD (Beirlant et al.,

2004, 2009), with distribution function given by

G(y) =


1 − [y(1 + δ − δyτ )]−1/γ , y > 1,
0, y ≤ 1, (2)

where γ > 0, τ < 0, and δ > max{−1, 1/τ }. As shown in Proposition 2.3 of Beirlant et al. (2009), for distribution functions
satisfying (R), the distribution function of the relative excess Y := X/u given that X > u can be approximated by (2) with
δ = δ(u) up to an error that is uniformly o(δ(u)) for u → ∞. In Dierckx et al. (2013), a robust and asymptotically unbiased
estimator for γ was introduced by fitting the EPD to a sample of relative excesses by theminimumdensity power divergence
(MDPD) criterion (Basu et al., 1998). In particular, let X1, . . . , Xn be independent and identically distributed (i.i.d.) random
variables with a distribution function satisfying (R), and denote by X1,n ≤ · · · ≤ Xn,n the corresponding order statistics.
The parameters γ and δ of the EPD are then estimated with the minimum density power divergence criterion applied to the
relative excesses over the random threshold u = Xn−k,n, namely Yj := Xn−k+j,n/Xn−k,n, j = 1, . . . , k, i.e. one minimises the
empirical divergence

∆α(γ , δ) :=


∞

1
g1+α(y)dy −


1 +

1
α


1
k

k
j=1

gα(Yj),

in case α > 0, and

∆0(γ , δ) := −
1
k

k
j=1

log g(Yj),

in case α = 0, where g denotes the density function of G. The parameter ρ is estimated externally, e.g. by using one of the
estimators proposed in Fraga Alves et al. (2003) or Goegebeur et al. (2010). Other robust estimators for γ were proposed by
e.g. Peng and Welsh (2001); Juárez and Schucany (2004); Vandewalle et al. (2007); Kim and Lee (2008).

In the present paper wewill consider robust and asymptotically unbiased extreme quantile estimation undermodel (R),
using the MDPD estimator of Dierckx et al. (2013). Beirlant et al. (2009) studied the asymptotically unbiased estimation
of small tail probabilities based on the EPD, fitted by the maximum likelihood method. In Gomes and Pestana (2007) an
asymptotically unbiased extreme quantile estimator was introduced for heavy-tailed distributions. These approaches are
however not robust against outliers. To the best of our knowledge, robust and asymptotically unbiased extreme quantile
estimation has not been considered before.

The remainder of our paper is organised as follows. In the next section we will introduce the robust and asymptotically
unbiased estimator for extreme quantiles and study its asymptotic properties under suitable regularity conditions. The finite
sample behaviour of the proposed estimator and some alternatives from the literature is illustrated with a small simulation
experiment in Section 3.

2. Main result

From the second order condition (R) and using the EPD as approximation to the distribution of X/un given X > un we
can for F(un) → 0 and pn → 0 such that pn/F(un) → c ∈ [0, ∞) as n → ∞ introduce

U0


1
pn


:= un


pn

F(un)

−γ

1 − δ(un)


1 −


pn

F(un)

−ρ


(3)

as approximation for U(1/pn).

Lemma 1. Assume (R). If F(un) → 0 and pn → 0 such that pn/F(un) → c ∈ [0, ∞) as n → ∞ we have that
U0(1/pn)/U(1/pn) → 1.

The proof of this lemma is straightforward and therefore it is for brevity omitted from the paper. Now, let X1, . . . , Xn be
i.i.d. random variables with a distribution function satisfying (R), and denote by X1,n ≤ · · · ≤ Xn,n the corresponding order
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statistics. Taking un = Xn−k,n, replacing F by the empirical distribution function in (3), and using the fact that e−x
∼ 1 − x

for x → 0, we can introduce the following extreme quantile estimator

U  1
pn


:= Xn−k,n

npn
k

−γn
exp


−δn 1 −

npn
k

−ρn
, (4)

where (γn,δn) is the MDPD estimator for (γ , δ) andρn is a consistent estimator sequence for ρ.
In order to study the asymptotic behaviour ofU(1/pn), properly normalised, we need some preliminary results. Firstly,

we need the limiting distribution of the MDPD estimator for (γn,δn). This was already derived in Dierckx et al. (2013), but
we repeat the result for completeness here. Let the arrow ❀ denote the convergence in distribution as n → ∞, and let

P
→

denote the convergence in probability as n → ∞. From now on we denote by γ0 and ρ0 the true values of the parameters
γ and ρ, respectively, and δn := δ(Xn−k,n).

Theorem 1. Let X1, . . . , Xn be a sample of i.i.d. random variables from a distribution function satisfying (R). Then if k, n → ∞

with k/n → 0 and
√
ka(n/k) → λ ∈ R, we have that

√
k

γ̂n − γ0

δ̂n − δn


❀ (Γ , ∆)

with (Γ , ∆) a bivariate normal random vector,

(Γ , ∆) ∼ N2

0, C−1(ρ0)B(ρ0)Σ(ρ0)B′(ρ0)C−1(ρ0)


,

where Σ(ρ0) is a symmetric (3 × 3) matrix with elements

σ11(ρ0) :=
α2(1 + γ0)

2

[1 + α(1 + γ0)]2[1 + 2α(1 + γ0)]
,

σ21(ρ0) :=
α(1 + γ0)[α(1 + γ0) − ρ0]

[1 + α(1 + γ0)][1 − ρ0 + α(1 + γ0)][1 − ρ0 + 2α(1 + γ0)]
,

σ22(ρ0) :=
[α(1 + γ0) − ρ0]

2

[1 − ρ0 + α(1 + γ0)]2[1 − 2ρ0 + 2α(1 + γ0)]
,

σ31(ρ0) := γ0


1

[1 + 2α(1 + γ0)]2
−

1
[1 + α(1 + γ0)]3


,

σ32(ρ0) := γ0


1

[1 − ρ0 + 2α(1 + γ0)]2
−

1
[1 + α(1 + γ0)]2[1 − ρ0 + α(1 + γ0)]


,

σ33(ρ0) := γ 2
0


2

[1 + 2α(1 + γ0)]3
−

1
[1 + α(1 + γ0)]4


,

C(ρ0) is a symmetric (2 × 2) matrix with elements

c11(ρ0) := γ −α−2
0

1 + α2(1 + γ0)
2

[1 + α(1 + γ0)]3
,

c12(ρ0) := γ −α−2
0

ρ0(1 − ρ0)[1 + α(1 + γ0) + α2(1 + γ0)
2
] + α3ρ0(1 + γ0)

3

[1 + α(1 + γ0)]2[1 − ρ0 + α(1 + γ0)]2
,

c22(ρ0) := γ −α−2
0

(1 − ρ0)ρ
2
0 + αρ2

0 (1 + γ0)[α(1 + γ0) − ρ0]

[1 + α(1 + γ0)][1 − ρ0 + α(1 + γ0)][1 − 2ρ0 + α(1 + γ0)]
,

and

B(ρ0) := γ −α−2
0


γ0 0 −1
γ0 −γ0(1 − ρ0) 0


.

Secondly, we need the limiting distribution of the intermediate order statistic Xn−k,n under (R), properly normalised.

Lemma 2. Let X1, . . . , Xn be a sample of i.i.d. random variables from a distribution function satisfying (R). For k, n → ∞ such
that k = o(n) and

√
ka(n/k) → λ ∈ R we have that

√
k


Xn−k,n

U(n/k)
− 1


❀ X

where X is a normal random variable, X ∼ N(0, γ 2
0 ).
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Fig. 1. Fréchet simulation, quantile 1–1/500. Median (left) and MSE (right) of the MDPD based estimator (solid), MLE based estimator (dotted) and
Weissman estimator (dashed). No contamination (top), 1% contamination (middle) and 2% contamination (bottom).

In the next theorem we state the limiting distribution of the extreme quantile estimator (4), when properly normalised.

Theorem 2. Let X1, . . . , Xn be a sample of i.i.d. random variables from a distribution function satisfying (R). Then if k → ∞ as
n → ∞ with k/n → 0,

√
ka(n/k) → λ ∈ R, npn/k → 0 and ln(npn)/

√
k → 0 we have that

√
k

ln k
npn

U


1
pn


U


1
pn

 − 1

 ❀ Γ .

Theorem 2 indicates that the normalised extreme quantile estimator inherits the asymptotic distribution of the MDPD
estimator for γ0. As shown in Dierckx et al. (2013), the MDPD estimator for γ0 based on the EPD is robust against outliers
and asymptotically unbiased.
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Fig. 2. Burr simulation, quantile 1–1/500. Median (left) andMSE (right) of theMDPD based estimator (solid), MLE based estimator (dotted) andWeissman
estimator (dashed). No contamination (top), 1% contamination (middle) and 2% contamination (bottom).

3. Simulation experiment

In this section we investigate the finite sample properties ofU(1/pn) as given in (4) with different parameter estimators,
in particular the MDPD estimatorγn andδn with α > 0, and the maximum likelihood estimator (corresponding to MDPD
with α = 0, see also Beirlant et al., 2009). We also consider the Weissman estimator (Weissman, 1978) given by

UW (1/pn) = Xn−k,n

npn
k

−Hk,n
,

with Hk,n being Hill’s estimator (Hill, 1975). For the parameter ρ we use the estimator of Fraga Alves et al. (2003).
Figs. 1 and 2 illustrate the results of a small simulation study based on 100 datasets, each of size n = 200, simulated from

the distributions given below. The same distributions were considered in Dierckx et al. (2013).

• Uncontaminated Fréchet distribution: F(x) = exp(−x−β), x > 0, β > 0, denoted Fréchet(β). For this study β was
chosen as 2.
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• Contaminated Fréchet distribution: Fϵ(x) = (1 − ϵ)F(x) + ϵF̃(x) where F(x) represents the uncontaminated Fréchet(2)
and F̃(x) = 1 − (x/xc)−β , x > xc where β is chosen as 0.5 and xc = 2 times the 99.99% quantile of the uncontaminated
Fréchet(2). We take ϵ = 0.01 and ϵ = 0.02.

• Uncontaminated Burr distribution: F(x) = 1 − (η/(η + xτ ))λ, x > 0, η, τ , λ > 0, denoted Burr(η, τ , λ). For this study
we have chosen η = 1, τ = 1 and λ = 2.

• Contaminated Burr distribution: Fϵ(x) = (1− ϵ)F(x)+ ϵF̃(x)where F(x) represents the uncontaminated Burr(1,1,2) and
F̃(x) = 1 − (x/xc)−β , x > xc where β = 0.5 and xc = 1.2 times the 99.99% quantile of the uncontaminated Burr(1,1,2).
We take ϵ = 0.01 and ϵ = 0.02.

We report only the results for quantile 1–1/500. The 1–1/1000 quantile was also considered and resulted in similar
outcomes.

In Figs. 1 and 2, the left panels show themedian of the extreme quantile estimators and the right panels themean squared
error (MSE) of ln(U∗(1/pn)/U(1/pn)), whereU∗(1/pn)denotes any of the considered estimators ofU(1/pn), as a function of k.
The true quantile is indicated by the horizontal reference line on the left panels. For ourMDPD based estimators for extreme
quantiles we set α = 0.1 in uncontaminated cases and α = 0.5 in contaminated cases. These values are motivated by a
simulation experiment where the MDPD based estimators were implemented for different values of α, and where α = 0.1
and 0.5 showed a good overall performance (we refer to the technical report of the paper, Goegebeur et al., 2013). The top
panels of Figs. 1 and 2 illustrate the behaviour of MDPD estimator with α = 0.1 (solid line), theMLE based estimator (dotted
line) and the Weissman estimator (dashed line) in absence of contamination. As expected, the second order estimators for
U(500) (MDPD and MLE) show sample paths that are much more stable around the true value of the quantile than those
of the Weissman estimator, which only touch the true quantile value at the smaller values of k, especially in case of the
Burr distribution where ρ0 = −0.5. Comparing the behaviour of the MDPD and MLE based estimators, we see a slight
advantage for the MDPD estimators. Also in terms of MSE the MDPD based estimator is very competitive relative to the
benchmarks. The middle and bottom panels of Figs. 1 and 2 show the behaviour of the estimators under 1% and 2% of
contamination, respectively. Note that the generated contamination is quite severe in terms of shift of distribution and tail
heaviness, especially if one takes the small sample size of n = 200 into account (the actual estimation is even based on only
the top k observations). Obviously, increasing the fraction of contamination negatively affects all estimators. In terms of bias
the robustMDPD based estimator clearly outperforms the non-robust estimators, and shows quite stable sample paths. Also
in terms of MSE the MDPD estimator performs best, in particular it shows a low MSE value for a wide range of k values.

Acknowledgements

The authors are very grateful to the two anonymous referees for their constructive comments on the initial version of
the paper.

Appendix

Proof of Lemma 2. Using the inverse probability integral transformwe have that Xn−k,n
D
= U(Yn−k,n), where Yn−k,n denotes

the order statistic n − k of a random sample Y1, . . . , Yn from the unit Pareto distribution with distribution function
H(y) = 1 − 1/y, y > 1. Thus,

√
k ln

Xn−k,n

U(n/k)
D
=

√
k ln

U(Yn−k,n)

U(n/k)

= γ0
√
k ln


k
n
Yn−k,n


+

√
k ln

1 + a(Yn−k,n)

1 + a(n/k)
=: L1 + L2.

For L1, use the well-known fact that
√
k(k/nYn−k,n − 1) ❀ Z where Z ∼ N(0, 1) (see for instance Corollary 2.2.2 in de

Haan and Ferreira, 2006) and the delta method to obtain that L1 ❀ X under the conditions of the lemma. For the term L2, a
straightforward application of Taylor’s theorem gives

L2 =
√
ka(n/k)


a(Yn−k,n)

a(n/k)
− 1 + o(1) + o


a(Yn−k,n)

a(n/k)


.

Since a is regularly varying we have that a(tx)/a(t) → xρ as t → ∞, locally uniformly for x > 0. Combining this with
the fact that k/nYn−k,n → 1 a.s. and the assumption

√
ka(n/k) → λ ∈ R we have that L2

P
→ 0. Lemma 2 follows then by

collecting the terms and another application of the delta method.

Proof of Theorem 2. First we comment on the joint convergence in distribution of the random vector√
k(γn − γ0),

√
k(δn − δn),

√
k(Xn−k,n/U(n/k) − 1),ρn


.
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According to the proof of Theorem 2 in Dierckx et al. (2013), we have that√
k(γn − γ0),

√
kδn ❀ (Γ ,∆),

where (Γ ,∆) ∼ N2((0, λ), C−1(ρ0)B(ρ0)Σ(ρ0)B′(ρ0)C−1(ρ0)). From the proof of Lemma 1 and Theorem 2 in Dierckx et al.
(2013) we can deduce thatγn andδn are independent of Xn−k,n, and therefore√

k(γn − γ0),
√
kδn, √k(Xn−k,n/U(n/k) − 1)


❀ (Γ ,∆, X),

where (Γ ,∆, X) ∼ N3((0, λ, 0), Ψ ), with

Ψ :=


C−1(ρ0)B(ρ0)Σ(ρ0)B′(ρ0)C−1(ρ0) 0

0 γ 2
0


.

Finally, using the fact that
√
kδn

P
→ λ andρn

P
→ ρ0 we have also that√

k(γn − γ0),
√
k(δn − δn),

√
k(Xn−k,n/U(n/k) − 1),ρn


❀ (Γ , ∆, X, ρ0).

Now, consider ln(U(1/pn)/U(1/pn)). Let dn := k/(npn). Straightforward calculations give

ln
U  1

pn


U


1
pn

 = ln
Xn−k,n

U
 n
k

 + (γn − γ0) ln dn + ln
1 + a

 n
k


1 + a


1
pn

 −δn 1 − dρnn  (5)

=: T1 + T2 + T3 − T4.

Clearly T1 = OP(1/
√
k) by Lemma 2 and T2 = OP


ln dn√

k


by Theorem 1. From Taylor’s theorem we can write

T3 = a(n/k)

1 −

a


1
pn


a
 n
k

 + o(1) + o

a


1
pn


a
 n
k


 .

By using the regular variation properties of the function a and the fact that dn → ∞ we have that a(1/pn)/a(n/k) → 0,
and thus under the conditions of the theorem T3 = O(a(n/k)). Finally, for T4 note that dρnn = oP(1) andδn = OP(1/

√
k).

Collecting all the terms we see thus that the rate of convergence of ln(U(1/pn)/U(1/pn)) is given by ln dn√
k
. Multiplying both

sides of (5) by
√
k/ ln dn, the result of the theorem follows.
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