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1 Introduction

Extreme value statistics deals with drawing inferences about characteristics related to tails of
distribution functions, such as indices describing tail decay, extreme quantiles, small exceedance
probabilities, and measures of extremal dependence. The literature on the estimation of tail
characteristics based on a sample of independent and identically distributed random variables
is very elaborate. We refer to Beirlant et al. (2004) and de Haan and Ferreira (2006) for recent
accounts of the available methodologies. However, a major statistical theme is the description of
a variable of primary interest, the dependent variable, in terms of covariates, but this regression
point of view on extremes has been studied much less extensively. In the present paper we will
study nonparametric robust tail index estimation when the variable of interest Y , assumed to
be heavy tailed, is observed simultaneously with a random covariate X.
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A conditional response distribution function F (y;x) := P(Y ≤ y|X = x) is said to be of Pareto-
type if for some positive function γ(x) we can write

F̄ (y;x) := 1− F (y;x)

= y−1/γ(x)ℓF (y;x), y > 0, (1)

where ℓF is a slowly varying function at infinity, i.e.

lim
y→∞

ℓF (λy;x)

ℓF (y;x)
= 1, for all λ > 0. (2)

It is obvious that the tail heaviness of F̄ (y;x) is governed by the tail function γ(x), where larger
values correspond with heavier tails.

The estimation of γ(x) in presence of fixed, that is nonrandom covariates, has been addressed
to some extent in the recent extreme value literature, and we refer to Chapter 7 in Beirlant
et al. (2004), and the references therein, for an overview. On the other hand, the random co-
variate case is much less explored. A parametric maximum likelihood approach was pursued in
Wang and Tsai (2009) within the Hall subclass of Pareto-type models (Hall, 1982). Also in the
framework of Pareto-type tails, Daouia et al. (2011) considered the non-parametric estimation
of extreme conditional quantiles, and plugged these conditional quantile estimators into classical
estimators for the extreme value index, such as the Hill (1975) and Pickands (1975) estimators.
Goegebeur et al. (2012) introduced a nonparametric and asymptotically unbiased estimator
for γ(x) based on locally weighted sums of power transformed excesses over a high threshold.
Recently, in Daouia et al. (2012), the methodology of Daouia et al. (2011) was extended to the
general max-domain of attraction.

In the present paper we develop a nonparametric robust and asymptotically unbiased estima-
tion procedure for the tail function γ(x) of heavy tailed distributions when the covariates are
random. The method is based on local fits of the extended Pareto distribution to the relative
excesses over a high threshold within a narrow window in the covariate space. The local fitting
is performed by an adjustment of the minimum density power divergence estimation (MDPDE)
criterion, originally proposed by Basu et al. (1998), to the locally weighted regression setting.
This criterion has already been used for the univariate estimation of heavy tailed distributions.
For instance, Kim and Lee (2008) obtained a robust estimator for γ > 0 by fitting the strict
Pareto distribution to the largest observations in a given dataset with the MDPDE method,
whereas Dierckx et al. (2012) used this criterion to obtain a robust and asymptotically unbiased
estimator. To the best of our knowledge, its application to the nonparametric extreme value
regression context is new.

Our paper is organized as follows. In the next section we introduce a nonparametric robust and
asymptotically unbiased estimator, obtained from local fits of the extended Pareto distribution
to the relative excesses over a high threshold, and establish its weak convergence under suitable
regularity conditions. In section 3 the finite sample performance of the proposed method is
evaluated by means of a small simulation experiment. The proofs of all results can be found in
the appendix.
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2 Estimation procedure and asymptotic properties

Let (Xi, Yi), i = 1, . . . , n, be independent realizations of the random vector (X,Y ) ∈ R
p ×R+,0,

where X has a distribution with joint density function b, and F̄ (y;x) is of Pareto-type, though
also satisfying the following second order condition. Denote by RVβ the class of the regularly
varying functions at infinity with index β, i.e. Lebesgue measurable ultimately positive functions
z satisfying limt→∞ z(tx)/z(t) = xβ for all x > 0.

Condition (R). Let γ(x) > 0 and ρ(x) < 0 be constants. The conditional distribution function
F (y;x) is such that y1/γ(x)F̄ (y;x) → C(x) ∈ (0,∞) as y → ∞ and the function δ(.;x) defined
via

F̄ (y;x) = C(x)y−1/γ(x)(1 + γ(x)−1δ(y;x)),

is ultimately nonzero, of constant sign and |δ| ∈ RVρ(x)/γ(x).

Now, consider the extended Pareto distribution (Beirlant et al., 2004, Beirlant et al., 2009),
with distribution function given by

G(z; γ, δ, ρ) =

{
1− [z(1 + δ − δzρ/γ)]−1/γ , z > 1,
0, z ≤ 1,

(3)

and density function

g(z; γ, δ, ρ) =

{ 1
γ z−1/γ−1[1 + δ(1 − zρ/γ)]−1/γ−1[1 + δ(1 − (1 + ρ/γ)zρ/γ)], z > 1,

0, z ≤ 1,

where γ > 0, ρ < 0, and δ > max{−1, γ/ρ}. It is well-known that for distribution functions
satisfying (R), one can approximate the conditional distribution function of Z := Y/u, given
that Y > u, where u denotes a high threshold value, by the extended Pareto distribution.
Indeed, as shown in Beirlant et al. (2009), one has that

sup
z≥1

∣∣∣∣
F̄ (uz;x)

F̄ (u;x)
− Ḡ(z; γ(x), δ(u;x), ρ(x))

∣∣∣∣ = o(δ(u;x)), if u → ∞.

Clearly, based on this result, one can obtain an estimator for γ(x) by fitting the extended Pareto
distribution to the relative excesses over a high threshold. This has been pursued in the uni-
variate context using a maximum likelihood procedure by Beirlant et al., (2009), and further
generalized by Dierckx et al. (2012) who applied the MDPDE criterion. As is well-known in
extreme value statistics, by taking the second order behavior of F explicitly into account in the
estimation stage one obtains asymptotically unbiased estimators for the extreme value index
(see e.g. Beirlant et al., 1999, Feuerverger and Hall, 1999).

In the present context we will develop a nonparametric, robust and asymptotically unbiased
estimator for γ(x) by fitting g locally to the relative excesses Zi := Yi/un, i = 1, . . . , n, by
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means of the MDPDE criterion, adjusted to locally weighted estimation, i.e. we minimize

∆̂α(γ, δ; ρ) :=

1

n

n∑

i=1

Khn
(x−Xi)

{∫ ∞

1
g1+α(z; γ, δ, ρ)dz −

(
1 +

1

α

)
gα(Zi; γ, δ, ρ)

}
1{Yi > un}, (4)

in case α > 0 and

∆̂0(γ, δ; ρ) := − 1

n

n∑

i=1

Khn
(x−Xi) ln g(Zi; γ, δ, ρ)1{Yi > un}, (5)

in case α = 0, where Khn
(x) := K(x/hn)/h

p
n, K is a joint density function on R

p, hn is a non-
random sequence of bandwidths with hn → 0 if n → ∞, 1{A} is the indicator function on the
event A and un is a local non-random threshold sequence satisfying un → ∞ if n → ∞. Note that
in case α = 0, the local empirical density power divergence criterion corresponds with a locally
weighted log-likelihood function. The parameter α controls the trade-off between efficiency and
robustness of the MDPDE criterion: the estimator becomes more efficient but less robust as α
gets closer to zero, whereas for increasing α the robustness increases and the efficiency decreases.

Note that in (4) and (5) the parameters of g are taken to be constant, i.e. not depending on
Xi, which means that, in the language of local polynomial fitting, we perform a local constant
estimation. Of course, the parameters γ and δ could also be replaced by polynomials, as was
done e.g. in Beirlant and Goegebeur (2004) in the context of local polynomial maximum likeli-
hood estimation of the generalized Pareto distribution, but this will make the derivations more
complicated. Also note that in our approach only γ(x) and δ(un;x) are estimated by the MD-
PDE method. The rate parameter ρ(x) will either be fixed or estimated externally. Estimating
the second order rate parameter ρ(x) externally is a common approach in extreme value statis-
tics and allows to obtain bias-corrected estimators for γ(x) with a smaller asymptotic variance
compared to those obtained with an internal estimation of ρ(x).

The MDPDE for (γ(x), δ(un;x)) satisfies the estimating equations

0 =
1

n

n∑

i=1

Khn
(x−Xi)1{Yi > un}

∫ ∞

1
gα(z; γ, δ, ρ)

∂g(z; γ, δ, ρ)

∂γ
dz

− 1

n

n∑

i=1

Khn
(x−Xi)g

α−1(Zi; γ, δ, ρ)
∂g(Zi ; γ, δ, ρ)

∂γ
1{Yi > un}, (6)

0 =
1

n

n∑

i=1

Khn
(x−Xi)1{Yi > un}

∫ ∞

1
gα(z; γ, δ, ρ)

∂g(z; γ, δ, ρ)

∂δ
dz

− 1

n

n∑

i=1

Khn
(x−Xi)g

α−1(Zi; γ, δ, ρ)
∂g(Zi ; γ, δ, ρ)

∂δ
1{Yi > un}. (7)

The following statistic is crucial for studying the asymptotic behavior of the estimators. Set
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ln+ x := lnmax{x, 1}, x > 0, and

Tn(K, s, t;x) :=
1

n

n∑

i=1

Khn
(x−Xi)

(
Yi

un

)s(
ln+

Yi

un

)t

1{Yi > un}, (8)

where s ≤ 0 and t ≥ 0.

We derive the asymptotic expansion for E[Tn(K, s, t;x)]. First consider the conditional expec-
tation

m(un, s, t;x) := E

[(
Y

un

)s(
ln+

Y

un

)t

1{Y > un}
∣∣∣X = x

]
.

Lemma 1 Case (i), s = t = 0:

m(un, 0, 0;x) = F̄ (un;x).

Case (ii), s < 0 or t > 0: assume (R), then for un → ∞ we have that

m(un, s, t;x) = γt(x)F̄ (un;x)Γ(t+ 1)

{
1

(1− sγ(x))t+1

−δ(un;x)

γ(x)

[
1

(1− sγ(x))t+1
− 1− ρ(x)

(1− ρ(x)− sγ(x))t+1

]
(1 + o(1))

}
.

Now let

m̃n(K, s, t;x) := E

[
Khn

(x−X)

(
Y

un

)s(
ln+

Y

un

)t

1{Y > un}
]
.

Note that m̃n(K, s, t;x) := E[Tn(K, s, t;x)]. In order to obtain the asymptotic expansion of
m̃n(K, s, t;x) we need to introduce some further conditions. For all x1, x2 ∈ R

p, the Euclidean
distance between x1 and x2 is denoted by d(x1, x2).

Assumption (B) There exists cb > 0 such that |b(x1)− b(x2)| ≤ cbd(x1, x2) for all x1, x2 ∈ R
p.

Assumption (K) K is a bounded density function on R
p, with support Ω included in the unit

hypersphere in R
p.

Finally, we need a smoothness condition for the conditional response distribution function, when
considered as a function of x. This condition will be formulated in terms of the conditional ex-
pectation m(un, s, t;x).

Assumption (M) The function m(un, s, t;x) satisfies that, for un → ∞, hn → 0, and some
S < 0 and T > 0,

Φ(un, hn;x) := sup
(s,t)∈[S,0]×[0,T ]

sup
z∈Ω

∣∣∣∣
m(un, s, t;x− hnz)

m(un, s, t;x)
− 1

∣∣∣∣→ 0 if n → ∞.
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Lemma 2 Assume (R), (B), (K), (M) and (s, t) ∈ [S, 0]× [0, T ]. For all x ∈ R
p where b(x) > 0

we have that if un → ∞ and hn → 0 then

m̃n(K, s, t;x) = m(un, s, t;x)b(x) {1 +O(hn) +O(Φ(un, hn;x))} .

By combining the result from Lemma 1 and 2 we have that

m̃n(K, 0, 0;x) = F̄ (un;x)b(x) {1 +O(hn) +O(Φ(un, hn;x))} , (9)

and, in case (s, t) ∈ [S, 0] × [0, T ] \ (0, 0)

m̃n(K, s, t;x) = γt(x)F̄ (un;x)b(x)Γ(t + 1)

{
1

(1− sγ(x))t+1

−δ(un;x)

γ(x)

[
1

(1− sγ(x))t+1
− 1− ρ(x)

(1− ρ(x)− sγ(x))t+1

]
(1 + o(1))

+O(hn) +O(Φ(un, hn;x))} . (10)

Let rn :=
√

nhpnF̄ (un;x)b(x), and consider the empirical processes

P
(j)
n (s) := rn

[
Tn(K, s, j;x)

F̄ (un;x)b(x)
− E

(
Tn(K, s, j;x)

F̄ (un;x)b(x)

)]
, j = 0, 1, 2,

where s ∈ [S, 0]. In the following theorem we establish the joint convergence of these empirical
processes.

Theorem 1 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vector
(X,Y ) where Y |X = x satisfies (R), X ∼ b, and assume (B), (K) and (M) hold. For all x ∈ R

p

where b(x) > 0, we have that if hn → 0, un → ∞, with nhpnF̄ (un;x) → ∞, then in C3([S, 0])

(P(0)
n ,P(1)

n ,P(2)
n ) (P(0),P(1),P(2)), for n → ∞,

a zero-mean Gaussian process, with, for s1, s2 ∈ [S, 0], covariance functions

Cov(P(j)(s1),P
(k)(s2)) =

(j + k)!γj+k(x)‖K‖22
[1− (s1 + s2)γ(x)]1+j+k

, j, k = 0, 1, 2. (11)

The following theorem states the existence and consistency of sequences of solutions to the
estimating equations (6) and (7). From now on we denote the true value of γ(x) and ρ(x) by
γ0(x) and ρ0(x), respectively. In first instance we assume that ρ0(x) is known.

Theorem 2 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vector
(X,Y ) where Y |X = x satisfies (R), X ∼ b, and assume (B), (K) and (M) hold. For all x ∈ R

p

where b(x) > 0, we have that if hn → 0, un → ∞ with nhpnF̄ (un;x) → ∞, then with probability
tending to 1 there exists sequences of solutions (γ̂n(x), δ̂n(x)) of the estimating equations (6) and

(7), with ρ fixed at ρ0(x), such that (γ̂n(x), δ̂n(x))
P→ (γ0(x), 0), as n → ∞.
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In order to establish the asymptotic normality of the consistent sequence of solutions (γ̂n(x), δ̂n(x)),
we re-center the empirical processes with the leading terms of the asymptotic expansions of
m̃n(K, s, j;x), as given in (9) and (10). Let

S
(j)
n (s) := rn

[
Tn(K, s, j;x)

F̄ (un;x)b(x)
− j!γj0(x)

[1− sγ0(x)]j+1

]
, j = 0, 1, 2.

Corollary 1 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vec-
tor (X,Y ) where Y |X = x satisfies (R), X ∼ b, and assume (B), (K) and (M) hold. For
all x ∈ R

p where b(x) > 0, we have that if hn → 0, un → ∞, with nhpnF̄ (un;x) → ∞,√
nhpnF̄ (un;x)δ(un;x) → λ ∈ R,

√
nhpnF̄ (un;x)hn → 0,

√
nhpnF̄ (un;x)Φ(un, hn;x) → 0, then

in C3([S, 0])

(S(0)n ,S(1)n ,S(2)n ) (S(0),S(1),S(2)), for n → ∞,

a Gaussian process, with, for s ∈ [S, 0], mean functions

E[S(j)(s)] = −λ
√
b(x)j!γj−1

0 (x)

[
1

[1− sγ0(x)]j+1
− 1− ρ0(x)

[1− ρ0(x)− sγ0(x)]j+1

]
, j = 0, 1, 2,

and covariance functions as given in (11).

Theorem 3 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vector
(X,Y ) where Y |X = x satisfies (R), X ∼ b, and assume (B), (K) and (M) hold. Con-
sider (γ̂n(x), δ̂n(x)), a consistent sequence of estimators for (γ0(x), 0) satisfying (6) and (7),
with ρ fixed at ρ0(x). For all x ∈ R

p where b(x) > 0, we have that if hn → 0, un →
∞ with nhpnF̄ (un;x) → ∞,

√
nhpnF̄ (un;x)δ(un;x) → λ ∈ R,

√
nhpnF̄ (un;x)hn → 0, and√

nhpnF̄ (un;x)Φ(un, hn;x) → 0, then

rn

[
γ̂n(x)− γ0(x)

δ̂n(x)− δ(un;x)

]
 N2(0,C

−1(ρ0(x))B(ρ0(x))Σ(ρ0(x))B
′(ρ0(x))C

−1(ρ0(x))),

for n → ∞, where the elements of the matrix Σ(ρ0(x)) are given by (18)-(27), and the matrices
B(ρ0(x)) and C(ρ0(x)) are defined in (29) and (30), respectively.

The following proposition deals with the behavior of the estimator when the parameter ρ is fixed
at some value ρ̃(x) < 0, possibly misspecified.

Proposition 1 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vec-
tor (X,Y ) where Y |X = x satisfies (R) and assume the parameter ρ is fixed at ρ̃(x) in (6)
and (7). Suppose also that X ∼ b, and assume (B), (M) and (K) hold. For all x ∈ R

p where
b(x) > 0, we have that if hn → 0, un → ∞ with nhpnF̄ (un;x) → ∞, when n → ∞, then with
probability tending to 1 there exists sequences of solutions (γ̂n(x), δ̂n(x)) of the estimating equa-

tions (6) and (7) such that (γ̂n(x), δ̂n(x))
P→ (γ0(x), 0).
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If additionally
√

nhpnF̄ (un;x)δ(un;x) → λ ∈ R,
√

nhpnF̄ (un;x)hn → 0, and√
nhpnF̄ (un;x)Φ(un, hn;x) → 0, then

rn

[
γ̂n(x)− γ0(x)

δ̂n(x)

]
 N2(−λ

√
b(x)C−1(ρ̃(x))B(ρ̃(x))D̃,

C
−1(ρ̃(x))B(ρ̃(x))Σ(ρ̃(x))B′(ρ̃(x))C−1(ρ̃(x))),

for n → ∞, where the elements of the vector D̃ are defined in (14), (15), (31) and (17).

Note that, as expected, by a misspecification of ρ at some value ρ̃(x), one loses the bias-correcting
effect of taking the second order structure of F into account in the estimation. However, the
variance expression remains the same as in Theorem 3, but with ρ0(x) replaced by ρ̃(x).

Finally, we examine the asymptotic behavior of (γ̂n(x), δ̂n(x)) in the case where ρ is replaced
by an external consistent estimator ρ̂n(x) in (6) and (7). For an example of a locally consistent
estimator for ρ(x) we refer to Goegebeur et al. (2012).

Theorem 4 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vector
(X,Y ) where Y |X = x satisfies (R) and X ∼ b. The result of Theorem 2 and 3 continues to
hold if ρ is replaced by an external consistent estimator ρ̂n(x) in (6) and (7)

3 Simulation study

In this section, we illustrate the finite sample behavior of our estimator γ̂n on a small simulation
study. In particular we compare our estimator with the following non-robust and biased version
proposed in Goegebeur et al. (2012):

γ̂(2)n (x, t,K,K) =
1

t+ 1

∑n
i=1 Kh(x−Xi)(lnYi − lnun)

t+1
+ 1{Yi > un}∑n

i=1 Kh(x−Xi)(ln Yi − lnun)t+1{Yi > un}

with t = 0 and two bias-corrected versions of the form

γ̂(2)n (x, β) = βγ̂(2)n (x, 0,K,K) + (1− β)γ̂(2)n (x, 1,K,K)

with β = −1 and β = 1/ρ̂(x). To estimate ρ we use as in Goegebeur et al. (2012) a Fraga Alves
(2003) type estimator.
In the robust case, a first order estimator is obtained by setting δ = 0, whereas a second order
bias-corrected version is derived by estimating δ. In that case the value of ρ is either fixed to −1
or estimated as previously mentioned. All kernels are taken as the bi-quadratic kernel function

K(x) =
15

16
(1− x2)21{x ∈ [−1, 1]}.

For α, the values α = 0.1 and α = 0.5 are considered. According to Table 1, higher values of α
are not appropriate, due to a low asymptotic relative efficiency compared to γ̂n with α = 0.
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α = 0.1 α = 0.5 α = 1

x0 = 0.1 or x0 = 0.9 ρ0 = -0.5 0.93 0.41 0.19
ρ0 = -1 0.94 0.47 0.25
ρ0 = -2 0.95 0.54 0.32

x0 = 0.5 ρ0 = -0.5 0.92 0.38 0.18
ρ0 = -1 0.93 0.44 0.23
ρ0 = -2 0.94 0.51 0.31

Table 1: Asymptotic relative efficiency of γ̂n with α = 0.1, 0.5 and 1 relative to γ̂n with α = 0.

To determine an optimal value for k and h, two strategies are applied as in Goegebeur et al.
(2012): an oracle strategy and a completely data driven method. For the oracle strategy, the
same algorithm as in Goegebeur et al. (2012) was applied to our new estimator of γ, that is

(ho, ko) := argmin
h∈H0,k∈K0

∆(γ̂(·), γ(·)) , (12)

where H0 and K0 are grids of values of h and k, respectively, and

∆2 (γ̂(·), γ(·)) := 1

M

M∑

m=1

(γ̂(zm)− γ(zm))2 ,

where z1, . . . , zM are regularly spaced in the covariate space. Note that this method requires
knowledge of the function γ(x), which is unknown in practical situations. The minimization is
performed on a grid of h ∈ [0.05; 0.5] and of k ∈ {2, ...,mx − 1} with M = 35.

For the completely data driven method, the optimal bandwidth h is determined again using
the leave-one-out cross-validation method of Goegebeur et al. (2012) and for the optimal k we
proceed as follows for all x under consideration:

• we compute the estimates for γ(x) with k = 5, 9, 13, . . . ⌊mx− 4⌋ (mx being the number of
observations in the ball B(x, h));

• we split the range of k into several blocks of same size;

• we calculate the standard deviation of the estimates for γ(x) in each block;

• the block with minimal standard deviation determines the k to be used.

We simulate N = 100 samples of size n = 1000 from the following Burr distribution

1− F (y;x) =
(
1 + y−ρ(x)/γ(x)

)1/ρ(x)
,

where
γ(x) = 0.5 (0.1 + sin(πx))

(
1.1− 0.5 exp(−64(x − 0.5)2)

)
and ρ(x) = −1.
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In case of contamination in the response, the following distribution will be used

Fǫ(y;x) = (1− ǫ)F (y;x) + ǫF̃ (y;x)

where F̃ (y;x) = 1−
(

y
xc

)−0.5
, y > xc.

Different settings have been considered

• Setting 1: uncontaminated situation;

• Setting 2: ǫ = 0.01, xc= 1.2 times the 99.99% quantile of F (y;x);

• Setting 3: ǫ = 0.01, xc= 2 times the 99.99% quantile of F (y;x);

• Setting 4: ǫ = 0.05, xc= 1.2 times the 99.99% quantile of F (y;x);

• Setting 5: ǫ = 0.05, xc= 2 times the 99.99% quantile of F (y;x).

Below, we only illustrate the settings 1, 2 and 4, since the settings 3 and 5 give results very
similar to 2 and 4, respectively.

From Table 2, we see that the non-robust bias-corrected estimator with ρ fixed at -1 behaves best
in terms of MSE. However, in general the robust estimators are competitive compared to the
corresponding non-robust ones. The MSE increases slightly when α increases, mainly due to the
larger variance in the estimation of γ. For the robust estimators, as well as for the non-robust
ones, the bias-corrected estimators outperform the biased ones in terms of MSE. Further, when
the data driven method is applied, the MSE is usually at least twice the MSE obtained using
the oracle strategy. The difference is largest for the biased estimators. Thus unsurprisingly, the
robust biased estimator using the data driven method behaves the worst in terms of MSE.

Figure 1: Setting 1: boxplots of γ̂n with kopt and hopt determined using the oracle strategy;
column 1: non-robust estimators, column 2: robust estimators with α = 0.1, column 3: robust
estimators with α = 0.5, row 1: biased estimator, row 2: bias-corrected estimator with ρ = −1,
row 3: bias-corrected estimator with ρ = ρ̂.

Figure 2: Setting 1: boxplots of γ̂n with kopt and hopt determined using the data driven method;
column 1: non-robust estimators, column 2: robust estimators with α = 0.1, column 3: robust
estimators with α = 0.5, row 1: biased estimator, row 2: bias-corrected estimator with ρ = −1,
row 3: bias-corrected estimator with ρ = ρ̂.

In Setting 2, the robust estimators suffer from the contamination. In the first column of Figures 3
and 4, one can observe the large biases and variances, especially for the bias-corrected estimators.
In particular, the sinus behaviour of γ as a function of x is not captured very well by the non-
robust estimators. This is confirmed in Table 3, where we can observe that the MSE is largest for
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Non Robust/Robust Estimator Oracle strategy Data driven method

non robust biased 0.006 0.019
non robust bias-corrected ρ = −1 0.003 0.006
non robust bias-corrected ρ = ρ̂ 0.007 0.006

robust α = 0.1 biased 0.006 0.025
robust α = 0.1 bias-corrected ρ = −1 0.007 0.011
robust α = 0.1 bias-corrected ρ = ρ̂ 0.006 0.007

robust α = 0.5 biased 0.008 0.055
robust α = 0.5 bias-corrected ρ = −1 0.007 0.017
robust α = 0.5 bias-corrected ρ = ρ̂ 0.007 0.019

Table 2: MSE for different estimators of γ based on 100 data sets simulated according to Setting
1.

the non-robust estimators, whereas the best results in MSE are obtained for the robust estimator
with α = 0.5 and ρ fixed at -1, although the result for ρ estimated is not much worse. Note
also that in these best cases the results obtained by the data driven method are comparable to
results of the oracle strategy.

Figure 3: Setting 2: boxplots of γ̂n with kopt and hopt determined using the oracle strategy;
column 1: non-robust estimators, column 2: robust estimators with α = 0.1, column 3: robust
estimators with α = 0.5, row 1: biased estimator, row 2: bias-corrected estimator with ρ = −1,
row 3: bias-corrected estimator with ρ = ρ̂.

Figure 4: Setting 2: boxplots of γ̂n with kopt and hopt determined using the data strategy;
column 1: non-robust estimators, column 2: robust estimators with α = 0.1, column 3: robust
estimators with α = 0.5, row 1: biased estimator, row 2: bias-corrected estimator with ρ = −1,
row 3: bias-corrected estimator with ρ = ρ̂.

When the contamination percentage is increased from 1 to 5%, the results for the non-robust
estimators are appalling, especially when the bias-corrected versions are applied. Whereas the
robust estimator with α = 0.1 could somewhat withstand 1% contamination, this is no longer
true for 5% contamination. Although behaving better than the corresponding non-robust estima-
tors, the estimators show a considerable bias and variance. The bias-corrected robust estimators
with α = 0.5 behave now the best by far. In these cases, the estimators with ρ fixed to -1 are
somewhat better than the estimators with ρ estimated and the data and oracle strategies are
comparable.
In conclusion, we can conclude that in both cases (contaminated and uncontaminated) the robust
bias-corrected estimator with α = 0.5 and ρ fixed at -1 gives the best results, although using ρ̂
is not much worse.
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Non Robust/Robust Estimator Oracle strategy Data driven method

non robust biased 0.053 0.069
non robust bias-corrected ρ = −1 0.291 0.977
non robust bias-corrected ρ = ρ̂ 0.447 0.470

robust α = 0.1 biased 0.020 0.039
robust α = 0.1 bias-corrected ρ = −1 0.011 0.025
robust α = 0.1 bias-corrected ρ = ρ̂ 0.014 0.023

robust α = 0.5 biased 0.012 0.060
robust α = 0.5 bias-corrected ρ = −1 0.007 0.009
robust α = 0.5 bias-corrected ρ = ρ̂ 0.009 0.012

Table 3: MSE for different estimators of γ based on 100 data sets simulated according to Setting
2.

Figure 5: Setting 4: boxplots of γ̂n with kopt and hopt determined using the oracle strategy;
column 1: non-robust estimators, column 2: robust estimators with α = 0.1, column 3: robust
estimators with α = 0.5, row 1: biased estimator, row 2: bias-corrected estimator with ρ = −1,
row 3: bias-corrected estimator with ρ = ρ̂.

Figure 6: Setting 4: boxplots of γ̂n with kopt and hopt determined using the data driven method;
column 1: non-robust estimators, column 2: robust estimators with α = 0.1, column 3: robust
estimators with α = 0.5, row 1: biased estimator, row 2: bias-corrected estimator with ρ = −1,
row 3: bias-corrected estimator with ρ = ρ̂.

Non robust/Robust Estimator Oracle strategy Data driven method

non robust biased 0.368 0.419
non robust bias-corrected ρ = −1 1.312 7.508
non robust bias-corrected ρ = ρ̂ 2.752 18244.6

robust α = 0.1 biased 0.124 0.159
robust α = 0.1 bias-corrected ρ = −1 0.197 0.676
robust α = 0.1 bias-corrected ρ = ρ̂ 0.240 0.668

robust α = 0.5 biased 0.036 0.091
robust α = 0.5 bias-corrected ρ = −1 0.013 0.017
robust α = 0.5 bias-corrected ρ = ρ̂ 0.023 0.020

Table 4: MSE for different estimators of γ based on 100 data sets simulated according to Setting
4.

Appendix

Proof of Lemma 1

The case (s, t) = (0, 0) is trivial. In case (s, t) 6= (0, 0), we obtain, using integration by parts,

m(un, s, t;x) = F̄ (un;x)

{∫ ∞

1

[
szs−1(ln z)t + tzs−1(ln z)t−1

]
Ḡ(z; γ(x), δ(un;x), ρ(x))dz

+

∫ ∞

1

[
szs−1(ln z)t + tzs−1(ln z)t−1

] [ F̄ (unz;x)

F̄ (un;x)
− Ḡ(z; γ(x), δ(un;x), ρ(x))

]
dz

}

=: F̄ (un;x)(T1 + T2).
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By application of Taylor’s theorem to Ḡ, we have that

T1 =

∫ ∞

1

[
szs−1(ln z)t + tzs−1(ln z)t−1

]
z−1/γ(x)dz

−δ(un;x)

γ(x)

∫ ∞

1

[
szs−1(ln z)t + tzs−1(ln z)t−1

]
z−1/γ(x)

[
1− zρ(x)/γ(x)

]
dz + o(δ(un;x))

=: T1,1 −
δ(un;x)

γ(x)
T1,2 + o(δ(un;x)).

Straightforward integration then gives

T1,1 =
γt(x)Γ(t+ 1)

(1− sγ(x))t+1
,

T1,2 = γt(x)Γ(t+ 1)

[
1

(1− sγ(x))t+1
− 1− ρ(x)

(1− ρ(x)− sγ(x))t+1

]
,

and thus

T1 = γt(x)Γ(t+ 1)

{
1

(1− sγ(x))t+1
− δ(un;x)

γ(x)

[
1

(1− sγ(x))t+1
− 1− ρ(x)

(1− ρ(x)− sγ(x))t+1

]
(1 + o(1))

}
.

A slight modification of Proposition 2.3 in Beirlant et al. (2009) gives that

sup
z≥1

z1/γ(x)
∣∣∣∣
F̄ (unz;x)

F̄ (un;x)
− Ḡ(z; γ(x), δ(un;x), ρ(x))

∣∣∣∣ = o(δ(un;x)), un → ∞,

and hence T2 = o(δ(un;x)).

Combining the above results establishes Lemma 1.

Proof of Lemma 2

By application of the rule of repeated expectations we obtain

m̃n(K, s, t;x) = E[Khn
(x−X)m(un, s, t;X)]

=

∫

Ω
K(z)m(un, s, t;x− hnz)b(x − hnz)dz,

so, by straightforward calculations,

|m̃n(K, s, t;x) − b(x)m(un, s, t;x)|

≤ m(un, s, t;x)

∫

Ω
K(z)|b(x − hnz)− b(x)|dz

+b(x)

∫

Ω
K(z)|m(un, s, t;x− hnz)−m(un, s, t;x)|dz

+

∫

Ω
K(z)|b(x− hnz)− b(x)||m(un, s, t;x− hnz)−m(un, s, t;x)|dz

=: T3 + T4 + T5.
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Concerning T3, by (B) and (K)

T3 ≤ m(un, s, t;x)cbhn

∫

Ω
K(z)d(0, z)dz

= m(un, s, t;x)b(x)O(hn).

The term T4 can be analyzed by invoking (M) and (K) yielding

T4 = m(un, s, t;x)b(x)O(Φ(un, hn;x)).

Finally, applying similar arguments to T5 gives that T5 = m(un, s, t;x)b(x)O(hnΦ(un, hn;x)),
and the result follows.

Proof of Theorem 1

Note that

P
(j)
n (s) =

√
n

[
1

n

n∑

i=1

1√
hpnF̄ (un;x)b(x)

K

(
x−Xi

hn

)(
Yi

un

)s(
ln

Yi

un

)j

1{Yi > un}

−E

(
1√

hpnF̄ (un;x)b(x)
K

(
x−X

hn

)(
Y

un

)s(
ln

Y

un

)j

1{Y > un}
)]

, j = 0, 1, 2.

As such, the empirical processes under consideration fit in the framework of Section 19.5 in van

der Vaart (2007) on changing function classes. Indeed, we can consider the classes W(j)
n :=

{w(j)
n,s; s ∈ [S, 0]}, where

w(j)
n,s(v, y) :=

1√
hpnF̄ (un;x)b(x)

K

(
x− v

hn

)(
y

un

)s(
ln

y

un

)j

1{y > un}, j = 0, 1, 2.

So, for the marginal convergence of the processes, it is sufficient to verify the conditions of The-
orem 19.28 in van der Vaart (2007).

First, by Lemmas 1 and 2

E[w(j)
n,s(X,Y )− w

(j)
n,t(X,Y )]2

=
‖K‖22

F̄ (un;x)b(x)
E


 1

hpn‖K‖22
K2

(
x−X

hn

)[(
Y

un

)s

−
(
Y

un

)t
]2(

ln
Y

un

)2j

1{Y > un}




≤ ‖K‖22(s− t)2

F̄ (un;x)b(x)
E

(
1

hpn‖K‖22
K2

(
x−X

hn

)(
ln

Y

un

)2(j+1)

1{Y > un}
)

= (2(j + 1))!γ2(j+1)(x)(s − t)2‖K‖22(1 + o(1)).

Note that the o(1) term above does not depend on s and t, and therefore

sup
|s−t|<δn

E[w(j)
n,s(X,Y )− w

(j)
n,t(X,Y )]2 ≤ (2(j + 1))!γ2(j+1)(x)δ2n‖K‖22(1 + o(1))

→ 0,
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for every sequence δn ↓ 0.

Next we verify the Lindeberg condition. Note that the envelope function W
(j)
n for W(j)

n can be
taken as

W (j)
n (v, y) =

1√
hpnF̄ (un;x)b(x)

K

(
x− v

hn

)(
ln

y

un

)j

1{y > un}, j = 0, 1, 2.

Using Lemmas 1 and 2, we then have

E

[
(W (j)

n (X,Y ))2
]

=
‖K‖22

F̄ (un;x)b(x)
E

[
1

hpn‖K‖22
K2

(
x−X

hn

)(
ln

Y

un

)2j

1{Y > un}
]

= γ2j(x)(2j)!‖K‖22(1 + o(1)) = O(1),

and, for every ε, α > 0,

E

[
(W (j)

n (X,Y ))21{W (j)
n (X,Y ) > ε

√
n}
]

≤ 1

εαnα/2
E

[
(W (j)

n (X,Y ))2+α
]

=
‖K2+α‖1

εα(nhpnF̄ (un;x)b(x))α/2
1

F̄ (un;x)b(x)
E

[
1

hpn‖K2+α‖1
K2+α

(
x−X

hn

)(
ln+

Y

un

)j(2+α)

1{Y > un}
]

= O

(
1

(nhpnF̄ (un;x))α/2

)
→ 0,

if nhpnF̄ (un;x) → ∞, j = 0, 1, 2.

Thirdly, we verify the condition on the bracketing integrals J[ ](δn,W(j)
n , L2(P)), j = 0, 1, 2, in

Theorem 19.28 of van der Vaart (2007). We have that

|w(j)
n,s(v, y) − w

(j)
n,t(v, y)| ≤ |s− t|√

hpnF̄ (un;x)b(x)
K

(
x− v

hn

)(
ln

y

un

)j+1

1{y > un},

=: |s− t|w(j)(v, y).

Note

E

[(
w(j)(X,Y )

)2]
= γ2(j+1)(x)(2(j + 1))!‖K‖22(1 + o(1)), j = 0, 1, 2.

So that the condition on J[ ](δn,W(j)
n , L2(P)), j = 0, 1, 2, is easy to verify using the result of

Example 19.7 in van der Vaart (2007) on parametric function classes.
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Finally, we comment on the pointwise convergence of the covariance functions on [S, 0]2. For
(s1, s2) ∈ [S, 0]2 we have that

Cov(P(j)
n (s1),P

(j)
n (s2))

= Cov(w(j)
n,s1(X,Y ), w(j)

n,s2(X,Y ))

=
‖K‖22

F̄ (un;x)b(x)
E

[
1

hpn‖K‖22
K2

(
x−X

hn

)(
Y

un

)s1+s2 (
ln

Y

un

)2j

1{Y > un}
]

− hpn

F̄ (un;x)b(x)
E

[
Khn

(x−X)

(
Y

un

)s1 (
ln

Y

un

)j

1{Y > un}
]
×

E

[
Khn

(x−X)

(
Y

un

)s2 (
ln

Y

un

)j

1{Y > un}
]

→ γ2j(x)(2j)!‖K‖22
[1− (s1 + s2)γ(x)]1+2j

, n → ∞; j = 0, 1, 2.

The joint convergence of the empirical processes follows then from the fact that the coordinate
classes being Donsker is equivalent to the union of the coordinate classes being Donsker, see

van der Vaart p. 270. The pointwise convergence of the covariances between the processes P
(j)
n ,

j = 0, 1, 2, can be established along the same line of arguments as above.

Proof of Theorem 2

To prove the existence and consistency of (γ̂n(x), δ̂n(x)) we adapt the proof of Theorem 5.1
in Chapter 6 of Lehmann and Casella (1998), where existence and consistency of solutions of
the likelihood equations is established, to the MDPDE framework. Let Qr denote the sphere
centered at (γ0(x), 0) and radius r, and let ∆̂α(γ, δ; ρ) denote the density power divergence
objective function. Note that r should be such that Qr is a subset of the parameter space. First
we rescale ∆̂α(γ, δ; ρ) as ∆̃α(γ, δ; ρ) := ∆̂α(γ, δ; ρ)/(F̄ (un;x)b(x)), and we show that for any r
sufficiently small

P(γ0(x),0)(∆̃α(γ0(x), 0; ρ0(x)) < ∆̃α(γ, δ; ρ0(x)) for all (γ, δ) on the surface of Qr) → 1.

Let fs(γ, δ; ρ0(x)), s = 1, 2, denote the derivatives of ∆̃α(γ, δ; ρ0(x)) with respect to γ and δ, re-
spectively, without the common scale factor 1+α. Similarly, fst and fstu, s, t, u = 1, 2, denote the
second and third order derivatives, respectively (again apart from the common scaling by 1+α).
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By Taylor’s theorem

∆̃α(γ, δ; ρ0(x))− ∆̃α(γ0(x), 0; ρ0(x))

= (1 + α) {f1(γ0(x), 0; ρ0(x))(γ − γ0(x)) + f2(γ0(x), 0; ρ0(x))δ

+
1

2

[
f11(γ0(x), 0; ρ0(x))(γ − γ0(x))

2 + f22(γ0(x), 0; ρ0(x))δ
2 + 2f12(γ0(x), 0; ρ0(x))(γ − γ0(x))δ

]

+
1

6

[
f111(γ̃, δ̃; ρ0(x))(γ − γ0(x))

3 + f222(γ̃, δ̃; ρ0(x))δ
3 + 3f112(γ̃, δ̃; ρ0(x))(γ − γ0(x))

2δ

+3f122(γ̃, δ̃; ρ0(x))(γ − γ0(x))δ
2
]}

(13)

=: (1 + α){S1 + S2 + S3},

where (γ̃, δ̃) is a point on the line segment connecting (γ, δ) and (γ0(x), 0). After some tedious,
but straightforward derivations one obtains

f1(γ0(x), 0; ρ0(x))

= γ−α−2
0 (x)

[
− αγ0(x)(1 + γ0(x))

[1 + α(1 + γ0(x))]2
Tn(K, 0, 0;x)

F̄ (un;x)b(x)

+γ0(x)
Tn(K,−α(1 + γ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)
− Tn(K,−α(1 + γ0(x))/γ0(x), 1;x)

F̄ (un;x)b(x)

]
,

f2(γ0(x), 0; ρ0(x))

= γ−α−1
0 (x)

[
− αρ0(x)(1 + γ0(x))

[1 + α(1 + γ0(x))][1 − ρ0(x) + α(1 + γ0(x))]

Tn(K, 0, 0;x)

F̄ (un;x)b(x)

+
Tn(K,−α(1 + γ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)
−(1− ρ0(x))

Tn(K,−(α(1 + γ0(x)) − ρ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)

]
.

By using the results of Lemmas 1, 2 and Theorem 1, we have that f1(γ0(x), 0; ρ0(x))
P→ 0 and

f2(γ0(x), 0; ρ0(x))
P→ 0, so, for any given r > 0 we have that |f1(γ0(x), 0; ρ0(x))| < r2 and

|f2(γ0(x), 0; ρ0(x))| < r2 with probability tending to 1, and hence, on Qr, |S1| < 2r3 with prob-
ability tending to 1.

We now focus on the second order derivatives appearing in S2. Again, by tedious calculus one
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obtains

f11(γ0(x), 0; ρ0(x))

= γ−α−2
0 (x)

[(
α+ 2

1 + α(1 + γ0(x))
− 2α+ 4

[1 + α(1 + γ0(x))]2
+

2α+ 2

[1 + α(1 + γ0(x))]3

)
Tn(K, 0, 0;x)

F̄ (un;x)b(x)

−(α+ 1)
Tn(K,−α(1 + γ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)
+
2α+ 2

γ0(x)

Tn(K,−α(1 + γ0(x))/γ0(x), 1;x)

F̄ (un;x)b(x)

− α

γ20(x)

Tn(K,−α(1 + γ0(x))/γ0(x), 2;x)

F̄ (un;x)b(x)

]
,

f12(γ0(x), 0; ρ0(x))

= γ−α−2
0 (x)

[(
1 + α(2 + α)(1 + γ0(x))

[1 + α(1 + γ0(x))]2

−(1− ρ0(x))
2 − α[ρ0(x)(1 − ρ0(x))− 2(1 + γ0(x))(1 − ρ0(x))] + α2(1 + γ0(x))(1 − ρ0(x))

[1− ρ0(x) + α(1 + γ0(x))]2

)

×Tn(K, 0, 0;x)

F̄ (un;x)b(x)
− (1 + α)

Tn(K,−α(1 + γ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)

+(α+ 1)(1 − ρ0(x))
Tn(K,−(α(1 + γ0(x))− ρ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)

+
α

γ0(x)

Tn(K,−α(1 + γ0(x))/γ0(x), 1;x)

F̄ (un;x)b(x)

−(α− ρ0(x))(1 − ρ0(x))

γ0(x)

Tn(K,−(α(1 + γ0(x))− ρ0(x))/γ0(x), 1;x)

F̄ (un;x)b(x)

]
,

f22(γ0(x), 0; ρ0(x))

= γ−α−2
0 (x)

[(
1 + α+ γ0(x)

1 + α(1 + γ0(x))
− 2(1− ρ0(x))(1 + γ0(x) + α)

1− ρ0(x) + α(1 + γ0(x))

+
(1 + γ0(x))(1 − 2ρ0(x)) + α(1− ρ0(x))

2

1− 2ρ0(x) + α(1 + γ0(x))

)
Tn(K, 0, 0;x)

F̄ (un;x)b(x)

−(α+ γ0(x))
Tn(K,−α(1 + γ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)

+2(1− ρ0(x))(α + γ0(x))
Tn(K,−(α(1 + γ0(x))− ρ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)

−[(1 + γ0(x))(1 − 2ρ0(x)) + (α− 1)(1 − ρ0(x))
2]
Tn(K,−(α(1 + γ0(x)) − 2ρ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)

]
.

Now, let f∗
st(γ0(x), 0; ρ0(x)) denote the limits of the random terms fst(γ0(x), 0; ρ0(x)), s, t = 1, 2.
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These can be obtained from the results of Lemmas 1, 2 and Theorem 1, and are given by

f∗
11(γ0(x), 0; ρ0(x)) = γ−α−2

0 (x)
1 + α2(1 + γ0(x))

2

[1 + α(1 + γ0(x))]3
,

f∗
12(γ0(x), 0; ρ0(x))

= γ−α−2
0 (x)

ρ0(x)(1 − ρ0(x))[1 + α(1 + γ0(x)) + α2(1 + γ0(x))
2] + α3ρ0(x)(1 + γ0(x))

3

[1 + α(1 + γ0(x))]2[1− ρ0(x) + α(1 + γ0(x))]2
,

f∗
22(γ0(x), 0; ρ0(x))

= γ−α−2
0 (x)

(1− ρ0(x))ρ
2
0(x) + αρ20(x)(1 + γ0(x))[α(1 + γ0(x))− ρ0(x)]

[1 + α(1 + γ0(x))][1 − ρ0(x) + α(1 + γ0(x))][1 − 2ρ0(x) + α(1 + γ0(x))]
.

Now, write

2S2 = f∗
11(γ0(x), 0; ρ0(x))(γ − γ0(x))

2 + f∗
22(γ0(x), 0; ρ0(x))δ

2 + 2f∗
12(γ0(x), 0; ρ0(x))(γ − γ0(x))δ

+[f11(γ0(x), 0; ρ0(x))− f∗
11(γ0(x), 0; ρ0(x))](γ − γ0(x))

2

+[f22(γ0(x), 0; ρ0(x))− f∗
22(γ0(x), 0; ρ0(x))]δ

2

+2[f12(γ0(x), 0; ρ0(x))− f∗
12(γ0(x), 0; ρ0(x))](γ − γ0(x))δ.

Note that the first three terms are in fact a nonrandom positive definite quadratic form in
(γ − γ0(x)) and δ. This can be verified analytically, but the result is not included in the paper.
By the spectral decomposition this quadratic form can be rewritten as λ1ξ

2
1 + λ2ξ

2
2 , where

0 < λ1 ≤ λ2 are the eigenvalues and ξ1 and ξ2 are orthogonal transformations of (γ−γ0(x)) and
δ. Note that in this new coordinate system Qr becomes ξ21 + ξ22 = r2. Thus, for the quadratic
form we have that λ1ξ

2
1 + λ2ξ

2
2 ≥ λ1(ξ

2
1 + ξ22) = λ1r

2. For the random part of S2 we know from

Lemmas 1, 2 and Theorem 1 that fst(γ0(x), 0; ρ0(x))
P→ f∗

st(γ0(x), 0; ρ0(x)), s, t = 1, 2, and thus
in absolute value the random part is less than 4r3 with probability tending to 1. Overall, we
have that there exists c > 0 and r0 > 0 such that for r < r0

S2 > cr2

with probability tending to 1.

For the term S3, one can show that |fstu(γ, δ; ρ0(x))| ≤ Mstu(V ), where V := [(X1, Y1), . . . , (Xn, Yn)],

for (γ, δ) ∈ Qr, with Mstu(V )
P→ mstu, s, t, u = 1, 2, which is bounded. The derivations are

straightforward, and are for brevity omitted from the paper. Thus, with probability tending to
1, |fstu(γ̃, δ̃; ρ0(x))| < 2mstu, and hence |S3| < er3 on Qr, where

e :=
1

3

2∑

s=1

2∑

t=1

2∑

u=1

mstu.

Combining the above we find that with probability tending to 1,

min(S1 + S2 + S3) > cr2 − (2 + e)r3,
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where the minimum is over (γ, δ) on the surface of Qr. Clearly, the right-hand side of the above
inequality is positive if r < c/(2 + e).

To complete the proof of the existence and consistency we adjust the line of argumentation of
Theorem 3.7 in Chapter 6 of Lehmann and Casella (1998). For r > 0, small enough that Qr is
a subset of the parameter space, consider

Sn(r) := {v : ∆̃α(γ0(x), 0; ρ0(x)) < ∆̃α(γ, δ; ρ0(x)) for all (γ, δ) on the surface of Qr}.
From the above we have that P(γ0(x),0)(Sn(r)) → 1 for any such r, and hence there exists
a sequence r∗n ↓ 0 such that P(γ0(x),0)(Sn(r

∗
n)) → 1 as n → ∞. By the differentiability of

∆̃α(γ, δ; ρ0(x)) we have that v ∈ Sn(r
∗
n) implies that there exists a point (γ̂n(r

∗
n), δ̂n(r

∗
n)) ∈ Qr∗

n

for which ∆̃α(γ, δ; ρ0(x)) attains a local minimum, and thus fs(γ̂n(r
∗
n), δ̂n(r

∗
n); ρ0(x)) = 0, s =

1, 2. Now let (γ̂∗n(x), δ̂
∗
n(x)) := (γ̂n(r

∗
n), δ̂n(r

∗
n)) for v ∈ Sn(r

∗
n) and arbitrary otherwise. Clearly

P(γ0(x),0)(f1(γ̂
∗
n(x), δ̂

∗
n(x); ρ0(x)) = 0, f2(γ̂

∗
n(x), δ̂

∗
n(x); ρ0(x)) = 0) ≥ P(γ0(x),0)(Sn(r

∗
n)) → 1,

as n → ∞. Thus with probability tending to 1 there exists a sequence of solutions to the
estimating equations (6) and (7). Also, for any fixed r > 0 and n sufficiently large

P(γ0(x),0)(d((γ̂
∗
n(x), δ̂

∗
n(x)), (γ0(x), 0)) < r) ≥ P(γ0(x),0)(d((γ̂

∗
n(x), δ̂

∗
n(x)), (γ0(x), 0)) < r∗n)

≥ P(γ0(x),0)(Sn(r
∗
n)) → 1,

which establishes the consistency of the sequence (γ̂∗n(x), δ̂
∗
n(x)).

Proof of Corollary 1

We have that

S
(j)
n (s) = P

(j)
n (s) + rn

[
E

(
Tn(K, s, j;x)

F̄ (un;x)b(x)

)
− j!γj0(x)

[1− sγ0(x)]1+j

]
, j = 0, 1, 2.

From Lemmas 1 and 2

rn

[
E

(
Tn(K, s, j;x)

F̄ (un;x)b(x)

)
− j!γj0(x)

[1− sγ0(x)]1+j

]

= −λ
√

b(x)j!γj−1
0 (x)

[
1

[1− sγ0(x)]j+1
− 1− ρ0(x)

[1− ρ0(x)− sγ0(x)]j+1

]
+ o(1), j = 0, 1, 2,

where the o(1) terms are uniform in s ∈ [S, 0].

Proof of Theorem 3

To start we establish the joint limiting distribution of the random terms appearing in fs(γ0(x), 0; ρ0(x)),
s = 1, 2, when appropriately normalized. Let

Tn :=
1

F̄ (un;x)b(x)




Tn(K, 0, 0;x)
Tn(K,−α(1 + γ0(x))/γ0(x), 0;x)

Tn(K,−(α(1 + γ0(x)) − ρ0(x))/γ0(x), 0;x)
Tn(K,−α(1 + γ0(x))/γ0(x), 1;x)


 ,
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T̃ :=




1
1

1+α(1+γ0(x))
1

1−ρ0(x)+α(1+γ0(x))
γ0(x)

[1+α(1+γ0(x))]2


 ,

and set An(ρ0(x)) := rn[Tn − T̃]. Thus, from Corollary 1, we get that

An(ρ0(x)) N4(λ
√

b(x)D,Σ(ρ0(x))),

where D is a (4× 1) vector with elements

D1 := 0, (14)

D2 := − αρ0(x)(1 + γ0(x))

γ0(x)[1 + α(1 + γ0(x))][1 − ρ0(x) + α(1 + γ0(x))]
, (15)

D3 := − ρ0(x)[α(1 + γ0(x))− ρ0(x)]

γ0(x)[1 − ρ0(x) + α(1 + γ0(x))][1 − 2ρ0(x) + α(1 + γ0(x))]
, (16)

D4 :=
ρ0(x)(1 − ρ0(x)) − α2ρ0(x)(1 + γ0(x))

2

[1 + α(1 + γ0(x))]2[1− ρ0(x) + α(1 + γ0(x))]2
, (17)

and Σ(ρ0(x)) a symmetric (4× 4) matrix with elements

σ11(ρ0(x)) := ‖K‖22, (18)

σ21(ρ0(x)) :=
‖K‖22

1 + α(1 + γ0(x))
, (19)

σ22(ρ0(x)) :=
‖K‖22

1 + 2α(1 + γ0(x))
, (20)

σ31(ρ0(x)) :=
‖K‖22

1− ρ0(x) + α(1 + γ0(x))
, (21)

σ32(ρ0(x)) :=
‖K‖22

1− ρ0(x) + 2α(1 + γ0(x))
, (22)

σ33(ρ0(x)) :=
‖K‖22

1− 2ρ0(x) + 2α(1 + γ0(x))
, (23)

σ41(ρ0(x)) :=
γ0(x)‖K‖22

[1 + α(1 + γ0(x))]2
, (24)

σ42(ρ0(x)) :=
γ0(x)‖K‖22

[1 + 2α(1 + γ0(x))]2
, (25)

σ43(ρ0(x)) :=
γ0(x)‖K‖22

[1− ρ0(x) + 2α(1 + γ0(x))]2
, (26)

σ44(ρ0(x)) :=
2γ20(x)‖K‖22

[1 + 2α(1 + γ0(x))]3
. (27)

Now, apply a Taylor series expansion of the estimating equations f1(γ̂n(x), δ̂n(x); ρ0(x)) = 0 and
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f2(γ̂n(x), δ̂n(x); ρ0(x)) = 0 around (γ0(x), 0). This gives

0 = f1(γ0(x), 0; ρ0(x)) + f11(γ0(x), 0; ρ0(x))(γ̂n(x)− γ0(x)) + f12(γ0(x), 0; ρ0(x))δ̂n(x)

+
1

2

{
f111(γ̆n(x), δ̆n(x); ρ0(x))(γ̂n(x)− γ0(x))

2 + f122(γ̆n(x), δ̆n(x); ρ0(x))δ̂
2
n(x)

+2f112(γ̆n(x), δ̆n(x); ρ0(x))(γ̂n(x)− γ0(x))δ̂n(x)
}
,

0 = f2(γ0(x), 0; ρ0(x)) + f21(γ0(x), 0; ρ0(x))(γ̂n(x)− γ0(x)) + f22(γ0(x), 0; ρ0(x))δ̂n(x)

+
1

2

{
f211(γ̆n(x), δ̆n(x); ρ0(x))(γ̂n(x)− γ0(x))

2 + f222(γ̆n(x), δ̆n(x); ρ0(x))δ̂
2
n(x)

+2f122(γ̆n(x), δ̆n(x); ρ0(x))(γ̂n(x)− γ0(x))δ̂n(x)
}
,

where (γ̆n(x), δ̆n(x)) is a point on the line segment connecting (γ̂n(x), δ̂n(x)) and (γ0(x), 0). A
straightforward rearrangement gives a set of random equations where interest is in rn(γ̂n(x) −
γ0(x)) and rnδ̂n(x):

−rn

[
f1(γ0(x), 0; ρ0(x))
f2(γ0(x), 0; ρ0(x))

]
=

[
f̃11(γ0(x), 0; ρ0(x)) f̃12(γ0(x), 0; ρ0(x))

f̃12(γ0(x), 0; ρ0(x)) f̃22(γ0(x), 0; ρ0(x))

] [
rn(γ̂n(x)− γ0(x))

rnδ̂n(x)

]
,(28)

where

f̃11(γ0(x), 0; ρ0(x)) := f11(γ0(x), 0; ρ0(x)) +
1

2

[
f111(γ̆n(x), δ̆n(x); ρ0(x))(γ̂n(x)− γ0(x))

+f112(γ̆n(x), δ̆n(x); ρ0(x))δ̂n(x)
]
,

f̃12(γ0(x), 0; ρ0(x)) := f12(γ0(x), 0; ρ0(x)) +
1

2

[
f122(γ̆n(x), δ̆n(x); ρ0(x))δ̂n(x)

+f112(γ̆n(x), δ̆n(x); ρ0(x))(γ̂n(x)− γ0(x))
]
,

f̃22(γ0(x), 0; ρ0(x)) := f22(γ0(x), 0; ρ0(x)) +
1

2

[
f222(γ̆n(x), δ̆n(x); ρ0(x))δ̂n(x)

+f122(γ̆n(x), δ̆n(x); ρ0(x))(γ̂n(x)− γ0(x))
]
.

Now, introduce

B(ρ0(x)) := γ−α−2
0 (x)

[
b11(ρ0(x)) γ0(x) 0 −1
b21(ρ0(x)) γ0(x) −γ0(x)(1 − ρ0(x)) 0

]
, (29)

with

b11(ρ0(x)) := − αγ0(x)(1 + γ0(x))

[1 + α(1 + γ0(x))]2
,

b21(ρ0(x)) := − αγ0(x)ρ0(x)(1 + γ0(x))

[1 + α(1 + γ0(x))][1 − ρ0(x) + α(1 + γ0(x))]
,

so that

rn

[
f1(γ0(x), 0; ρ0(x))
f2(γ0(x), 0; ρ0(x))

]
= B(ρ0(x))An(ρ0(x)),
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leading to the weak convergence

rn

[
f1(γ0(x), 0; ρ0(x))
f2(γ0(x), 0; ρ0(x))

]
 N2(λ

√
b(x)B(ρ0(x))D,B(ρ0(x))Σ(ρ0(x))B

′(ρ0(x))).

Concerning the terms f̃st(γ0(x), 0; ρ0(x)), s, t = 1, 2, we have by Lemmas 1 and 2, Theorem
1, the consistency of (γ̂n(x), δ̂n(x)) and because |fstu(γ, δ; ρ0(x))| ≤ Mstu(V ), in some open

neighborhood of (γ0(x), 0), with Mstu(V ) = OP(1), s, t, u = 1, 2, that f̃st(γ0(x), 0; ρ0(x))
P→

f∗
st(γ0(x), 0; ρ0(x)), s, t = 1, 2. Let

C(ρ0(x)) :=

[
f∗
11(γ0(x), 0; ρ0(x)) f∗

12(γ0(x), 0; ρ0(x))
f∗
12(γ0(x), 0; ρ0(x)) f∗

22(γ0(x), 0; ρ0(x))

]
. (30)

From the proof of the consistency, we know that C(ρ0(x)) is a positive definite matrix, and thus
invertible. Then, according to Lemma 5.2 in Chapter 6 of Lehmann and Casella (1998), for the
solution of the system of equations (28), we have the following convergence

rn

[
γ̂n(x)− γ0(x)

δ̂n(x)

]
 N2(−λ

√
b(x)C−1(ρ0(x))B(ρ0(x))D,

C
−1(ρ0(x))B(ρ0(x))Σ(ρ0(x))B

′(ρ0(x))C
−1(ρ0(x))).

After tedious calculations one can show that −C
−1(ρ0(x))B(ρ0(x))D = [0, 1]′. Taking into

account that rnδ(un;x) → λ
√

b(x), the theorem follows.

Proof of Proposition 1

The arguments needed to prove the consistency and asymptotic normality are the same as those
used in the proofs of Theorem 2 and 3, and therefore we limit ourselves to giving some comments
to the main ideas. Concerning the consistency one works with ∆̃α(γ, δ; ρ̃(x)) and its derivatives.

Again by Lemmas 1, 2 and Theorem 1 we have that fs(γ0(x), 0; ρ̃(x))
P→ 0, s = 1, 2, and that

fst(γ0(x), 0; ρ̃(x))
P→ f∗

st(γ0(x), 0; ρ̃(x)), s, t = 1, 2, leading to the results for S1 and S2. Also for
the third order derivatives we can use the same arguments. This establishes the existence and
the consistency. To prove the asymptotic normality one uses the same line of argumentation
as in Theorem 3, with ρ0(x) replaced by ρ̃(x) in Ak,n(ρ0(x)), Σ(ρ0(x)), B(ρ0(x)) and C(ρ0(x)),

and replacing the vector D by D̃, having as elements D̃1 := D1, D̃2 := D2, D̃4 := D4 and

D̃3 := − [α(1 + γ0(x))− ρ̃(x)]ρ0(x)

γ0(x)[1 − ρ̃(x) + α(1 + γ0(x))][1 − ρ0(x)− ρ̃(x) + α(1 + γ0(x))]
. (31)

Proof of Theorem 4

The proof of Theorem 4 is similar to that of Theorems 2 and 3, and therefore we only give the
big lines of argument.
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Concerning the existence and consistency of (γ̂(x), δ̂n(x)) as estimators for (γ0(x), 0), we have
that by the consistency of ρ̂n(x) and conditioning on the event ρ̂n(x) ∈ (ρ0(x)− ε, ρ0(x)+ ε) for
some ε > 0, it is sufficient to show that

P(γ0(x),0)(∆̃α(γ0(x), 0; ρ̂n(x)) < ∆̃α(γ, δ; ρ̂n(x))

for all (γ, δ) on the surface of Qr | ρ̂n(x) ∈ (ρ0(x)− ε, ρ0(x) + ε)) → 1.

First make a Taylor series expansion as in (13), though now with ρ0(x) replaced by ρ̂n(x).

Assume that (−(α(1+ γ0(x))− (ρ0(x)− ε))/γ0(x),−(α(1 + γ0(x))− (ρ0(x)+ ε))/γ0(x)) ∈ [S, 0].
Concerning S1, we have that f1(γ0(x), 0; ρ̂n(x)) does not depend on ρ̂n(x) and therefore obviously

f1(γ0, 0; ρ̂n(x))
P→ 0, whereas for f2(γ0, 0; ρ̂n(x)) we write

f2(γ0(x), 0; ρ̂n(x))

= γ−α−1
0 (x)

[
− αρ̂n(x)(1 + γ0(x))

[1 + α(1 + γ0(x))][1 − ρ̂n(x) + α(1 + γ0(x))]

Tn(K, 0, 0;x)

F̄ (un;x)b(x)

+
Tn(K,−α(1 + γ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)

−(1− ρ̂n(x))

(
Tn(K,−(α(1 + γ0(x)) − ρ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)
− 1

1− ρ0(x) + α(1 + γ0(x))

)

−(1− ρ̂n(x))

(
Tn(K,−(α(1 + γ0(x)) − ρ̂n(x))/γ0(x), 0;x)

F̄ (un;x)b(x)
− Tn(K,−(α(1 + γ0(x)) − ρ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)

)

− 1− ρ̂n(x)

1− ρ0(x) + α(1 + γ0(x))

]

=: γα−1
0 (x) [T1 + T2 + T3 + T4 + T5] .

Now use Lemmas 1, 2 and Theorem 1 to obtain

T1
P→ − αρ0(x)(1 + γ0(x))

[1 + α(1 + γ0(x))][1 − ρ0(x) + α(1 + γ0(x))]
,

T2
P→ 1

1 + α(1 + γ0(x))
,

T3
P→ 0,

|T4| ≤ 1− ρ̂n(x)

γ0(x)
|ρ̂n(x)− ρ0(x)|

Tn(K, 0, 1;x)

F̄ (un;x)b(x)
= oP(1),

T5
P→ − 1− ρ0(x)

1− ρ0(x) + α(1 + γ0(x))
.

Combining these results give that f2(γ0, 0; ρ̂n(x))
P→ 0.
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For S2, write

2S2 = f∗
11(γ0(x), 0; ρ0(x))(γ − γ0(x))

2 + f∗
22(γ0(x), 0; ρ0(x))δ

2

+2f∗
12(γ0(x), 0; ρ0(x))(γ − γ0(x))δ

+[f11(γ0(x), 0; ρ̂n(x))− f∗
11(γ0(x), 0; ρ0(x))](γ − γ0(x))

2

+[f22(γ0(x), 0; ρ̂n(x))− f∗
22(γ0(x), 0; ρ0(x))]δ

2

+2[f12(γ0(x), 0; ρ̂n(x))− f∗
12(γ0(x), 0; ρ0(x))](γ − γ0(x))δ.

By arguments similar to those used above when treating f2(γ0(x), 0; ρ̂n(x)), we have that

fst(γ0(x), 0; ρ̂n(x))
P→ f∗

st(γ0(x), 0; ρ0(x)), s, t = 1, 2, and hence we can proceed as in the proof
of Theorem 2. Finally, conditionally on ρ̂n(x) ∈ (ρ0(x)− ε, ρ0(x)+ ε), also the argument for the
third order derivatives holds and the proof for the existence and consistency can be completed
in the same way as in the proof of Theorem 2.

The proof of asymptotic normality proceeds along the lines of Theorem 3. To start we make a
Taylor series expansion of the estimating equations, leading to (28), though with ρ0(x) replaced
by ρ̂n(x). Since P(ρ̂n(x) ∈ (ρ0(x) − ε, ρ0(x) + ε)) → 1, we have that (by an appropriate choice
of S in Corollary 1)

Ak,n(ρ̂n(x)) N4(λ
√

b(x)D,Σ(ρ0(x))),

and hence

rn

[
f1(γ0(x), 0; ρ̂n(x))
f2(γ0(x), 0; ρ̂n(x))

]
= B(ρ̂n(x))Ak,n(ρ̂n(x))

 N2(λ
√

b(x)B(ρ0(x))D,B(ρ0(x))Σ(ρ0(x))B
′(ρ0(x))).

The rest of the proof is identical to that of Theorem 3.
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