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Abstract

We introduce a robust and asymptotically unbiased estimator for the coefficient of tail
dependence in multivariate extreme value statistics. The estimator is obtained by fitting a
second order model to the data by means of the minimum density power divergence criterion.
The asymptotic properties of the estimator are investigated. The efficiency of our method-
ology is illustrated on a small simulation study and by a real dataset from the actuarial
context.
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1 Introduction

Multivariate extreme value statistics deals with the estimation of the tail of a multivariate dis-
tribution function based on a random sample. Of particular interest is the estimation of the
extremal dependence between two or more variables. Modelling tail dependence is a crucial
issue in actuarial science (see e.g. Joe, 2011), firstly, because of the forthcoming Solvency II
regulation framework which will oblige insurers and mutuals to compute 99.5% quantiles. Sec-
ondly, tail dependence can be used in the daily work of actuaries, for instance for pricing an
excess-of-loss reinsurance treaty (see Cebrian et al., 2003, and the references therein), and for
approximating very large quantiles of the distribution of the sums of possibly dependent risks
(Barbe et al., 2006). In finance, obvious applications also arise, see e.g. Charpentier and Juri
(2006), and Poon et al. (2004). Therefore, accurate modelling of extremal events is needed to
better understand the relationship of possibly dependent risks at the tail.
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A full characterization of the extremal dependence between variables can be obtained from func-
tions like the spectral distribution function or the Pickands dependence function. We refer to
Beirlant et al. (2004), and de Haan and Ferreira (2006), and the references therein, for more
details about this approach. Alternatively, similar to classical statistics one can try and summa-
rize the extremal dependency in a number of well chosen coefficients that give a representative
picture of the full dependency structure. In this paper we will consider the estimation of such a
dependency coefficient, namely the coefficient of tail dependence.

The extremal dependence between the components of a continuous random vector (X,Y ) with
unit Fréchet margins (note that this can be assumed without loss of generality) can be analyzed
with the model of Ledford and Tawn (1997):

P(X > x, Y > y) = x−d1y−d2`(x, y), x, y > 0,

where d1, d2 > 0 and ` is a bivariate slowly varying function, i.e.

`(tx, ty)

`(t, t)
→ ζ(x, y) as t→∞, for all x, y > 0,

and the function ζ is homogeneous of order zero. The parameter η := (d1 + d2)
−1 is called the

coefficient of tail dependence. It satisfies η ∈ (0, 1], and larger values of it indicate a stronger
extremal dependence. As we can imagine, several attempts have been made to estimate η from
data. Since

P(min(X,Y ) > z) = P(X > z, Y > z) = z−1/η`(z, z),

i.e. the transformed variable min(X,Y ) follows a Pareto-type model with index 1/η, one can es-
timate η with classical estimators for the extreme value index like the Hill (Hill, 1975), Pickands
(Pickands, 1975) or moment estimator (Dekkers et al., 1989). However, this type of estimators
typically suffers from bias and also they are not robust with respect to outliers. These issues
will be addressed in the present paper.

In order to obtain a bias-corrected estimator we will, as usual in extreme value statistics, invoke a
second order condition. In particular we will work under the following condition from Draisma et
al. (2004), which can be seen as an extension of the above discussed Ledford and Tawn condition.

Condition SO: Let (X,Y ) be a random vector with joint distribution function F and continuous
marginal distribution functions FX and FY such that

lim
t↓0

q1(t)
−1
(
P (1− FX(X) < tx, 1− FY (Y ) < ty)

P (1− FX(X) < t, 1− FY (Y ) < t)
− c(x, y)

)
=: c1(x, y) (1)

exists for all x ≥ 0, y ≥ 0 with x+y > 0, a function q1 tending to zero as t ↓ 0, and c1 a function
neither constant nor a multiple of c. Moreover, we assume that the convergence is uniform on
{(x, y) ∈ [0,∞)2|x2 + y2 = 1}.
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Essentially, this condition is a second order multivariate regular variation condition on the func-
tionR(x, y) := P (1− FX(X) < x, 1− FY (Y ) < y). It can be shown thatR(t, t) is regularly vary-
ing at zero with index 1/η, |q1| is regularly varying at zero with index τ ≥ 0, and that the func-
tion c is homogeneous of order 1/η, that is c(tx, ty) = t1/ηc(x, y). Also, c1(x, x) = x1/η(xτ−1)/τ .

The robust and asymptotically unbiased estimator for η will be derived from a second order
model obtained from condition (SO), which will be fitted to the data by the minimum density
power divergence (MDPD) criterion. The specific second order model will be introduced in the
next section. The density power divergence criterion was originally introduced by Basu et al.
(1998) for the purpose of developing a robust estimation method. In particular, the density
power divergence between density functions f and h is given by

∆α(f, h) :=

{ ∫
R
[
h1+α(z)−

(
1 + 1

α

)
hα(z)f(z) + 1

αf
1+α(z)

]
dz, α > 0,∫

R log f(z)
h(z)f(z)dz, α = 0.

Note that for α = 0 one recovers the Kullback-Leibler divergence, whereas setting α = 1 leads
to the L2 divergence. Assume that the density function h depends on a parameter vector θ, and
let f be the true density function of the random variable under consideration. The idea is then
to estimate θ by minimizing an empirical version of ∆α based on a random sample Z1, . . . , Zn
from f : if α > 0 one considers

∆̂α(θ) :=

∫
R
h1+α(z)dz −

(
1 +

1

α

)
1

n

n∑
i=1

hα(Zi),

whereas for α = 0

∆̂0(θ) := − 1

n

n∑
i=1

log h(Zi).

For α = 0, one fits the model h to the data using the maximum likelihood method. The pa-
rameter α controls the trade-off between efficiency and robustness of the MDPD estimator: the
estimator becomes more efficient but less robust against outliers as α gets closer to zero, whereas
for increasing α the robustness increases and the efficiency decreases.

In Beirlant et al. (2011), an asymptotically unbiased estimator for η was proposed, based on
fitting the extended Pareto distribution with the method of maximum likelihood to properly
transformed random variables. Goegebeur and Guillou (2013) obtained asymptotic unbiased-
ness by taking a properly weighted sum of two biased estimators for η. However, these methods
are not robust with respect to outliers.

The plan of the paper is as follows. In Section 2, we will introduce a second order Pareto-type
model, which is derived from a submodel of condition (SO), and discuss the robust estimation
method. In Section 3, the asymptotic properties of our estimator are established. In particular,
we will establish a uniform consistency result for the tail quantile process and use this to obtain
the limiting distribution of the robust estimator for η. The estimation method is illustrated with
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a small simulation study in Section 4, and a real dataset concerning workers’ compensation in
Section 5. Section 6 contains some concluding remarks. The proofs of all results are deferred to
the Appendix.

2 Model and assumptions

Let (X,Y ) be a bivariate random vector with continuous marginal distributions satisfying

P (1− FX(X) < x, 1− FY (Y ) < y) = xd1yd2g(x, y)

(
1 +

1

η
δ(x, y)

)
, x ≥ 0, y ≥ 0, (2)

where d1, d2 are positive constants, η := (d1 + d2)
−1 ∈ (0, 1) is the tail dependence coefficient, g

is a continuous function that is homogeneous of order 0 and δ is a function of constant sign in
the neighbourhood of zero, with |δ| being a bivariate regularly varying function, that is, there
exists a function ξ such that

lim
t↓0

|δ|(tx, ty)

|δ|(t, t)
= ξ(x, y),

for all x, y ≥ 0. We assume additionally that ξ is continuous, homogeneous of order τ > 0, and
that the convergence is uniform on {(x, y) ∈ [0,∞)2|x2 + y2 = 1}. Note that we exclude the
case η = 1, as was also done in Beirlant and Vandewalle (2002), Beirlant et al. (2011), and
Goegebeur and Guillou (2013). For the sequel, it is instructive to keep the following elementary
property in mind.

Lemma 1 Model (2) satisfies assumption (SO).

Many commonly used joint distribution functions satisfy model (2). Note that this model is in
fact a condition on the copula function C. Indeed, one easily verifies that

P (1− FX(X) < x, 1− FY (Y ) < y) = x+ y − 1 + C(1− x, 1− y).

Example 1: the Farlie Gumbel Morgenstern (FGM) distribution

The Farlie Gumbel Morgenstern copula function is given by

C(x, y) = xy [1 + β(1− x)(1− y)] , (x, y) ∈ [0, 1]2,

with β ∈ [−1, 1]. Straightforward calculations lead to

P(1− FX(X) < x, 1− FY (Y ) < y) = xy[1 + β − β(x+ y) + βxy].

In the case where β ∈ (−1, 1], we get that d1 = d2 = 1, η = 1/2, g(x, y) = 1 + β, δ(x, y) =
−ηβ(x+ y − xy)/(1 + β), ξ(x, y) = (x+ y)/2 and τ = 1. In terms of condition (SO) this gives
then c(x, y) = xy, c1(x, y) = xy(x+ y − 2)/2 and q1(t) ∼ −2βt/(1 + β).
In the case β = −1, we have d1 = d2 = 3/2, η = 1/3, g(x, y) = (x + y)/

√
xy, δ(x, y) =

−xy/(3(x + y)), ξ(x, y) = 2xy/(x + y) and τ = 1. Condition (SO) is also satisfied with
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c(x, y) = xy(x+ y)/2, c1(x, y) = xy(2xy − x− y)/2 and q1(t) ∼ −t/2.

Example 2: the Frank distribution

The copula function for the Frank distribution is given by

C(x, y) = − 1

β
log

[
1− (1− e−βx)(1− e−βy)

1− e−β

]
, (x, y) ∈ [0, 1]2,

where β > 0. Tedious computations based on expansions of the above copula function lead to
the following approximation

P(1− FX(X) < x, 1− FY (Y ) < y) =
β

1− e−β
xy

[
1− β

2
(x+ y) + o(x) + o(y)

]
,

from which we deduce that d1 = d2 = 1, η = 1/2, g(x, y) = β/(1−e−β), δ(x, y) ∼ −ηβ(x+y)/2,
ξ(x, y) = (x+y)/2 and τ = 1. In terms of (SO) this gives c(x, y) = xy, c1(x, y) = xy(x+y−2)/2,
q1(t) ∼ −βt.

Note that the FGM and the Frank copulas have been widely used in actuarial science and in
finance, see e.g. Frees and Valdez (1998), Klugman and Parsa (1999), Embrechts et al. (2003),
which provides further motivation for the importance of our model (2) in these two fields of
applications.

For convenience we assume that the marginal distributions are unit Pareto. In this case model
(2) becomes

P (X > x, Y > y) = x−d1y−d2g∗(x, y)

(
1 +

1

η
δ∗(x, y)

)
(3)

where g∗(x, y) := g(1/x, 1/y) and δ∗(x, y) := δ(1/x, 1/y). This model is a slight generalization
of the second order model that was considered in Beirlant et al. (2011), and will form the basis
for the estimation procedure to be developed in this paper. Note that one can write

P(X > x, Y > y) = P
(
X > x,

ω

1− ω
Y > x

)
,

where ω := x/(x + y), ω ∈ (0, 1), can be interpreted as being a radial parameter. Thus, we
consider the transformed variable Zω := min(X, ω

1−ωY ). For this variable one easily derives the
survival function, given by

P(Zω > z) = Cω z
−1/η

(
1 +

1

η
δω(z)

)
, z > 0, (4)

where Cω := (ω/(1−ω))d2g∗(1, (1−ω)/ω), and |δω| is a function of regular variation with index
−τ . This second order condition is identical to the one used in the univariate framework in
Beirlant et al. (2009) and Dierckx et al. (2013), and therefore, as shown in these papers, one
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can approximate the distribution of Zω/u, conditionally on Zω > u, for large u, by the extended
Pareto distribution. Formally, for u large

P(Zω > uz)

P(Zω > u)
≈ H(z; η, δω(u), τ) :=

{
1, z ≤ 1,

[z(1 + δω(u)− δω(u)z−τ )]−1/η, z > 1.

Using this property, one can estimate η by fitting h, the density function associated with H, to
relative excesses over some large threshold u. From the univariate context it is well-known that
by taking the second order structure into account one obtains estimators with better bias prop-
erties than so-called first order estimators. We refer to Feuerverger and Hall (1999), Beirlant et
al. (1999), and more recently Gomes et al. (2008).

Specifically, for a sample (X1, Y1), . . . , (Xn, Yn) of independent random vectors from model (2),
one transforms into unit Pareto margins by using the empirical distribution functions of the X
and Y observations. This gives

Z̃ω,i := min

(
n+ 1

n+ 1−RXi
,

ω

1− ω
n+ 1

n+ 1−RYi

)
with RXi and RYi denoting the rank of Xi and Yi, i = 1, . . . , n, in the respective samples. The
parameters η and δω of the extended Pareto distribution are estimated by fitting the density
function h to the relative excesses Zj := Z̃ω,n−m+j,n/Z̃ω,n−m,n, j = 1, . . . ,m, where 1 ≤ m ≤
n − 1, and Z̃ω,1,n ≤ . . . ≤ Z̃ω,n,n are the order statistics of Z̃ω,1, . . . , Z̃ω,n, using the minimum
density power divergence criterion. The density function of the extended Pareto distribution is
given by

h(z; η, δω, τ) =
1

η
z−1/η−1[1 + δω(1− z−τ )]−1/η−1[1 + δω(1− (1− τ)z−τ )], z > 1,

where η > 0, τ > 0, and δω > max{−1,−1/τ}. Remember that the parameter δω reflects in fact
the function δω(u), where δω(u) → 0 as u → ∞, but we do not make this dependence on the
threshold explicit in the notation. In the sequel we use the common reparametrization ρ = −τη.
The MDPD estimator for η and δω satisfies the estimating equations

0 =

∫ ∞
1

hα(z; η, δω, ρ)
∂h(z; η, δω, ρ)

∂η
dz − 1

m

m∑
j=1

hα−1(Zj ; η, δω, ρ)
∂h(Zj ; η, δω, ρ)

∂η
, (5)

0 =

∫ ∞
1

hα(z; η, δω, ρ)
∂h(z; η, δω, ρ)

∂δω
dz − 1

m

m∑
j=1

hα−1(Zj ; η, δω, ρ)
∂h(Zj ; η, δω, ρ)

∂δω
. (6)

Note that only the parameters η and δω are estimated with the MDPD method. The parameter
ρ will in this paper be fixed at some value, either the correct value or a mis-specified one.

3 Asymptotic results

Consider the random variables Z̃ω,1, . . . , Z̃ω,n, with order statistics Z̃ω,1,n ≤ . . . ≤ Z̃ω,n,n. In
order to obtain the limiting distribution of the MDPD estimators for η and δω we need the
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following result concerning the tail quantile process Qn(t) := Z̃ω,n−[mt],n, 0 < t < n/m, where m
is an intermediate sequence, i.e. m → ∞ as n → ∞ with m = o(n). Set cω := c(1, ω/(1 − ω)),
ξω := ξ(1, ω/(1− ω)), q(t) := P(1− FX(X) < t, 1− FY (Y ) < t) and let k/n = q←(m/n), where
it is assumed that k →∞.

Theorem 1 Let (X1, Y1), . . . , (Xn, Yn) be independent copies of the random vector (X,Y ) which
has a joint distribution satisfying (2) such that the function c given in (8) has continuous first
order partial derivatives. For m, k → ∞ as n → ∞ such that

√
mq1(k/n) → λ ∈ R we have

that there exist suitable versions of Qn, a suitable process W (./cω), equal in distribution to a
standard Brownian motion such that for all t0, ε > 0

sup
0<t≤t0

tη+
1
2+ε

∣∣∣∣∣∣√m
(
k

n
Qn(t)−

(
t

cω

)−η
)
− ηt−(η+1)cηωW

(
t

cω

)
− λη

(
t

cω

)−η
(
t
cω

)ητ
ξω − 1

τ

∣∣∣∣∣∣ = oP(1).

This result can now be used in order to study the statistics
A

(1)
m,n(s1) := 1

m

∑m
j=1

(
Z̃ω,n−j+1,n

Z̃ω,n−m,n

)s1
=
∫ 1
0

(
Qn(t)
Qn(1)

)s1
dt,

A
(2)
m,n(s2) := 1

m

∑m
j=1

(
Z̃ω,n−j+1,n

Z̃ω,n−m,n

)s2
log

Z̃ω,n−j+1,n

Z̃ω,n−m,n
=
∫ 1
0

(
Qn(t)
Qn(1)

)s2
log Qn(t)

Qn(1)
dt,

A
(3)
m,n(s3) := 1

m

∑m
j=1

(
Z̃ω,n−j+1,n

Z̃ω,n−m,n

)s3 (
log

Z̃ω,n−j+1,n

Z̃ω,n−m,n

)2
=
∫ 1
0

(
Qn(t)
Qn(1)

)s3 (
log Qn(t)

Qn(1)

)2
dt,

with s1, s2, s3 ≤ 0. In fact, the estimating equations (5) and (6) depend only on the data through
statistics of these proposed forms.

Theorem 2 Under the assumptions of Theorem 1, we have that

√
m


A

(1)
m,n(s1)− 1

1−ηs1
A

(2)
m,n(s2)− η

(1−ηs2)2

A
(3)
m,n(s3)− 2η2

(1−ηs3)3

 N3(λµ,Σ)

where

µ := −ξωc−ητω



s1η2

(1−ηs1)(1−η(s1−τ))

η2(1+ητ−η2s22)
(1−ηs2)2(1−η(s2−τ))2

2η2

τ

[
1

(1−ηs3)3 −
1+ητ

(1−η(s3−τ))3

]

 ,
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and where Σ has elements given by

σ11 :=
η2s21

(1− s1η)2(1− 2s1η)
,

σ22 := η2
{

2

[1− 2s2η]3
− 1

(1− s2η)4

}
,

σ33 := η4
{

4!

[1− 2s3η]5
− 4

(1− s3η)6

}
,

σ12 := η

{
1

[1− (s1 + s2)η]2
− 1

(1− s1η)(1− s2η)2

}
,

σ13 := 2η2
{

1

[1− (s1 + s3)η]3
− 1

(1− s1η)(1− s3η)3

}
,

σ23 := 2η3
{

3

[1− (s2 + s3)η]4
− 1

(1− s2η)2(1− s3η)3

}
.

From now on we will denote the true value of η and ρ by η0 and ρ0, respectively. Let δω,n :=

δω(Z̃ω,n−m,n).

Theorem 3 Under the conditions of Theorem 1 we have that

√
m

[
η̂n − η0

δ̂ω,n − δω,n

]
 N2

(
0,C−1(ρ0)B(ρ0)D(ρ0)B′(ρ0)C−1(ρ0)

)
,

where

B(ρ0) := η−α−20

[
η0 0 −1
η0 −η0(1− ρ0) 0

]
,

the symmetric matrix C(ρ0) has elements

c11(ρ0) := η−α−20

1 + α2(1 + η0)
2

[1 + α(1 + η0)]3
,

c12(ρ0) := η−α−20

ρ0(1− ρ0)[1 + α(1 + η0) + α2(1 + η0)
2] + α3ρ0(1 + η0)

3

[1 + α(1 + η0)]2[1− ρ0 + α(1 + η0)]2
,

c22(ρ0) := η−α−20

(1− ρ0)ρ20 + αρ20(1 + η0)[α(1 + η0)− ρ0]
[1 + α(1 + η0)][1− ρ0 + α(1 + η0)][1− 2ρ0 + α(1 + η0)]

,
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and the symmetric matrix D(ρ0) has elements

d11(ρ0) :=
α2(1 + η0)

2

[1 + α(1 + η0)]2[1 + 2α(1 + η0)]
,

d21(ρ0) :=
α(1 + η0)[α(1 + η0)− ρ0]

[1 + α(1 + η0)][1− ρ0 + α(1 + η0)][1− ρ0 + 2α(1 + η0)]
,

d22(ρ0) :=
[α(1 + η0)− ρ0]2

[1− ρ0 + α(1 + η0)]2[1− 2ρ0 + 2α(1 + η0)]
,

d31(ρ0) := η0

(
1

[1 + 2α(1 + η0)]2
− 1

[1 + α(1 + η0)]3

)
,

d32(ρ0) := η0

(
1

[1− ρ0 + 2α(1 + η0)]2
− 1

[1 + α(1 + η0)]2[1− ρ0 + α(1 + η0)]

)
,

d33(ρ0) := η20

(
2

[1 + 2α(1 + η0)]3
− 1

[1 + α(1 + η0)]4

)
.

The proof of this theorem is identical to that of Theorem 2 in Dierckx et al. (2013), and therefore
it is omitted here. The estimator η̂n is asymptotically unbiased in the sense that the mean of the
limiting distribution is zero, whatever the value of λ. Now, we consider the asymptotic behavior
of the MDPD estimator when the parameter ρ is fixed at some value ρ̃, possibly mis-specified.

Theorem 4 Under the conditions of Theorem 1 we have that

√
m

[
η̂n − η0
δ̂ω,n

]
 N2

(
−λC−1(ρ̃)B(ρ̃)µ̃,C−1(ρ̃)B(ρ̃)D(ρ̃)B′(ρ̃)C−1(ρ̃)

)
,

where the vector µ̃ has elements

µ̃1 := ξωc
ρ0
ω

αη0(1 + η0)

[1 + α(1 + η0)][1− ρ0 + α(1 + η0)]
,

µ̃2 := ξωc
ρ0
ω

η0[α(1 + η0)− ρ̃]

[1− ρ̃+ α(1 + η0)][1− ρ0 − ρ̃+ α(1 + η0)]
,

µ̃3 := −ξωcρ0ω
η20[1− ρ0 − α2(1 + η0)

2]

[1 + α(1 + η0)]2[1− ρ0 + α(1 + η0)]2
.

For the proof of this theorem we refer to the proof of Proposition 1 in Dierckx et al. (2013).
As is clear from Theorem 4, if one mis-specifies the parameter ρ, then the mean of the limiting
distribution is not necessarily zero, and hence one possibly loses the bias-correction. However,
as shown in the simulation experiments of Goegebeur and Guillou (2013), the estimators are
not very sensitive to such a mis-specification and setting ρ̃ = −1 often results in an η−estimator
that outperforms estimators that are not corrected for bias. Also in Beirlant et al. (2011) the
second order rate parameter was fixed at -1. A third possibility for dealing with the second
order parameter ρ consists in estimating it externally. In the univariate framework several
estimators for this parameter have been proposed that have a good practical performance, see
e.g. Fraga Alves et al. (2003), Ciuperca and Mercadier (2010), Goegebeur et al. (2010) and
Deme et al. (2013), but at this stage it is unclear if the ideas from the univariate context can
be transported without any problem to the multivariate case, and therefore we do not explore
this option theoretically in the present paper.
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4 Simulation study

In this section, we illustrate the finite sample properties of our robust and bias-corrected esti-
mator η̂n through a small simulation study. In order to make the dependence on the tuning
parameter α explicit, we use from now on the notation η̂n,α.

At first, we simulate n pairs (Xi, Yi), i = 1, ..., n, independently from a FGM copula with Fréchet
marginals. Two values of β are used, -1 and 1, which allows to have two different values of η, 1/3
and 1/2 respectively. Similarly, we simulate n pairs from a Frank copula with β = 2 for which
η = 1/2. Then we transform the margins into (approximately) unit Pareto using the empirical
distribution functions. This gives us Z̃ω,i, i = 1, ..., n. In all our simulations ω = 1/2. Finally,

we minimize the empirical density power divergence ∆̂α.

In each setting (FGM or Frank copulas), we also contaminated the sample as follows:
• we simulate independently X̃j and Ỹj , j = 1, ..., n0 := bnεc, from a unit Fréchet distribution;

• all our above methodology is applied to our new n + n0 pairs (X1, Y1), ..., (Xn, Yn), (X̃1 +
Xn,n, Ỹ1 + Yn,n), ..., (X̃n0 +Xn,n, Ỹn0 + Yn,n), where Xn,n and Yn,n are sample maxima of the X
and Y observations, respectively.

The percentage of contamination is set to ε = 1% and 2%, while n = 100, and the procedure is
repeated 1024 times. Thus n0 is 1 or 2. Note that we run the computations 210 = 1024 times
since we used parallelization on a 8−core computer.

Figure 1 shows the mean (left panels of the figure) and the mean squared error (MSE, right
panels of the figure) of our estimator η̂n,α as a function of m for different values of α: 0 (full
line), 0.1 (dashed line), 0.5 (dotted line) and 1 (dash-dotted line) for the FGM copula with
β = −1. Figures 2 and 3 are constructed analogously for the FGM copula with β = 1 and the
Frank copula with β = 2, respectively. From our simulations, we can conclude the following:
• on uncontaminated datasets the choice α = 0 seems to perform the best, although there are
no big differences. This is not surprising since η̂n,0 corresponds to the maximum likelihood es-
timator which is well-known to be efficient, but not robust. Note also that the estimators have
a very nice performance, especially if one takes the small sample size of n = 100 into account;
• the lack of robustness of the maximum likelihood estimator is illustrated in the contaminated
cases where we clearly observe the superiority of η̂n,α with α > 0. In view of the three figures,
we conclude that for the contamination we consider, the value α = 0.5 seems to be the most
appropriate in terms of bias and MSE;
• as expected, increasing the fraction of contamination negatively affects the estimators;
• the superiority of our estimator η̂n,0.5 compared to the maximum likelihood estimator (α = 0)
is stronger in case η = 1/3 than in case η = 1/2. A possible explanation for this is that in the
case η = 1/3 one disturbs the sample by outliers that have a different dependence structure,
whereas for η = 1/2 the data are only disturbed by outliers, but their asymptotic dependence
is the same as for the uncontaminated data;
• as is well-known in the extreme value framework, bias correction leads to estimators with
rather stable sample paths as a function of m, which alleviates the choice of m to some extent.

10



We also redraw our simulation study for n = 1000 and also we take different values of ω. Since
the conclusions remain the same, the figures are omitted for brevity from the paper.

5 Illustration: workers’ compensation data

We consider the example of the workers’ compensation data examined by Klugman (1992),
Frees et al. (2001) and Frees (2010). The dataset is originally from the National Council on
Compensation Insurance (NCCI). This database contains records of losses due to permanent or
partial disability claims for workers’ compensation insurance in the US. For each claim amount,
the payroll is available as a measure of exposure units. A total of 847 data points is available
coming from the observation of 121 risk classes over 7 years. Possible time dependency among
the data points is ignored in this paper.

In Figures 4 (a) and 4 (b) we show the scatterplot of the original data and the data transformed
to unit Pareto margins, respectively. We can see some points far away from the cloud and the
question is whether these points are outliers, that could have an adverse effect on the estimation
of tail dependence. To have an idea about this question, we plot our estimator for η as a function
ofm with three different values of α: 0 (solid line), 0.1 (dashed line) and 0.2 (dotted line). Indeed,
if the results for the maximum likelihood method (α = 0) are similar to those obtained with
the robust method (α > 0) this indicates that the dataset does not contain disturbing outliers.
Figure 4 (c) represents the Pareto quantile plot of the Z̃ω,i, i = 1, . . . , n. This plot is more or less
linear in the largest observations indicating a good fit of the model (4) to our data. In Figure
4 (d) we show the η estimates obtained on the original data with ω = 1/2. For small values of
m the three estimators are close to each other, which seems to indicate that on the contrary of
what we can believe in view of Figures 4 (a) or (b), this dataset does not contain outliers. To
reinforce this idea, we contaminate the dataset according to the algorithm described in Section
4, with ε = 1% and 2%. Again ω is set at the value 1/2. The results are given in Figures 4 (e)
and (f). As is clear the estimator with α = 0.2 is more stable for small values of m whereas the
one with α = 0, corresponding to maximum likelihood, is pulled up for small m, but decreases
rather quickly which is in accordance with what we already observed in the simulation section.
The estimator with α = 0.1 provides more robustness than the maximum likelihood estimator,
though it is not enough for the considered contamination.

6 Conclusion

In this paper we introduced a robust and asymptotically unbiased estimator for the coefficient
of tail dependence in extreme value statistics. The estimator is obtained from a second order
bivariate tail model that is fitted to minima of properly transformed observations using the
MDPD technique. A uniform convergence in probability result for the tail quantile process of
the transformed observations is introduced, which is of general importance and in our context
it is crucial for the theoretical study of the estimator. In future research we will extend the

11



Figure 1: Farlie Gumbel Morgenstern copula with β = −1: mean (left), MSE (right) of η̂n,α for
different values of α: 0 (full line), 0.1 (dashed line), 0.5 (dotted line) and 1 (dash-dotted line),
based on 1024 simulations; from the top to the bottom: no contamination, contamination with
ε = 1%, with 2%. The horizontal reference line in the left panels of the figure corresponds to
the true value of η. 12



Figure 2: Farlie Gumbel Morgenstern copula with β = 1: mean (left), MSE (right) of η̂n,α for
different values of α: 0 (full line), 0.1 (dashed line), 0.5 (dotted line) and 1 (dash-dotted line),
based on 1024 simulations; from the top to the bottom: no contamination, contamination with
ε = 1%, with 2%. The horizontal reference line in the left panels of the figure corresponds to
the true value of η. 13



Figure 3: Frank copula with β = 2: mean (left), MSE (right) of η̂n,α for different values of
α: 0 (full line), 0.1 (dashed line), 0.5 (dotted line) and 1 (dash-dotted line), based on 1024
simulations; from the top to the bottom: no contamination, contamination with ε = 1%, with
2%. The horizontal reference line in the left panels of the figure corresponds to the true value
of η. 14



(a) (b)

(c) (d)

(e) (f)

Figure 4: Workers’ compensation dataset: (a) Scatterplot of the original data; (b) Scatterplot
of the data transformed to unit Pareto margins; (c) Pareto quantile plot of the Z̃ω,i, i = 1, ..., n;
(d) Estimator of η with α = 0 (solid line), α = 0.1 (dashed line), α = 0.2 (dotted line) in the
case of no contamination; (e) Same in the case of contamination with ε = 1%; (f) Same in the
case of contamination with ε = 2%.
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developed methodology to the bias-corrected and robust estimation of probabilities of extreme
failure sets.

Appendix

Proof of Lemma 1

Using model (2), one gets

P(1− FX(X) < tx, 1− FY (Y ) < ty)

P(1− FX(X) < t, 1− FY (Y ) < t)
− c(x, y) = xd1yd2

g(x, y)

g(1, 1)

1 + 1
η δ(tx, ty)

1 + 1
η δ(t, t)

− c(x, y). (7)

Set

c(x, y) = xd1yd2
g(x, y)

g(1, 1)
, (8)

this gives

c(tx, ty) = td1+d2xd1yd2
g(x, y)

g(1, 1)
= td1+d2c(x, y)

as required (see Draisma et al., 2004). Plugging into (7) leads to

P(1− FX(X) < tx, 1− FY (Y ) < ty)

P(1− FX(X) < t, 1− FY (Y ) < t)
− c(x, y) =

1

η
δ(t, t)c(x, y)

δ(tx,ty)
δ(t,t) − 1

1 + 1
η δ(t, t)

∼ τ

η
δ(t, t)c(x, y)

ξ(x, y)− 1

τ
, t ↓ 0 (9)

so we can take

q1(t) =
τ

η
δ(t, t)

c1(x, y) = c(x, y)
ξ(x, y)− 1

τ
.

Finally, by using the properties of bivariate regularly varying functions, one easily establishes
that

c1(x, x) = x1/η
xτ − 1

τ
,

see e.g. p. 287 in Beirlant et al. (2004). The uniformity of the convergence in (2) applies also
to (9). This concludes Lemma 1.
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Proof of Theorem 1

Let Ui := 1−FX(Xi) and Vi := 1−FY (Yi), i = 1, . . . , n, with the convention that U0,n = V0,n = 0
and Un+1,n = Vn+1,n = 1. First check that

n∑
i=1

1l{Z̃ω,i>r} =
n∑
i=1

1l{
n+1

n+1−RX
i

>r, n+1

n+1−RY
i

ω
1−ω>r

}

=

n∑
i=1

1l{
1−

RX
i

n+1
< 1
r
,1−

RY
i

n+1
< ω

1−ω
1
r

}

=

n∑
i=1

1l{
Ui<Udn+1

r e,n
,Vi<Vd (n+1)ω

r(1−ω) e,n

} a.s. .

Thus

Fn(r) :=
1

n

n∑
i=1

1l{ k
n+1

Z̃ω,i>r} =
1

n

n∑
i=1

1l{
Ui<Ud kr e,n

,Vi<Vd ω
1−ω

k
r e,n

}

=:
1

n
S
(
Ud k

r
e,n−, Vd ω

1−ω
k
r
e,n−

)
,

where S(x−, y−) denotes the left-hand side limit of S at (x, y). Let W (x, y) be a Gaussian process
with mean zero and covariance structure defined as E(W (x1, y1)W (x2, y2)) = c(x1 ∧x2, y1 ∧ y2).
Under model (2), which implies condition (SO) by Lemma 1, we have according to Peng (1999)
and (6.2) in Draisma et al. (2004), and invoking a Skorohod construction (but keeping the same
notation), that

S
(
k
nx,

k
ny

ω
1−ω

)
m

=
P
(
U ≤ k

nx, V ≤
k
ny

ω
1−ω

)
P
(
U ≤ k

n , V ≤
k
n

) +
W (x, y ω

1−ω )
√
m

+ o

(
1√
m

)

=
P
(

1− FX(X) < k
nx, 1− FY (Y ) < k

ny
ω

1−ω

)
P
(
1− FX(X) < k

n , 1− FY (Y ) < k
n

) +
W (x, y ω

1−ω )
√
m

+ o

(
1√
m

)
= c

(
x, y

ω

1− ω

)
+ q1

(
k

n

)
c1

(
x, y

ω

1− ω

)
+
W (x, y ω

1−ω )
√
m

+ o

(
1√
m

)
,

a.s. uniformly on [0, b]2. Using the condition
√
mq1(k/n)→ λ this can be rewritten as

sup
0≤x,y≤b

∣∣∣∣∣√m
[
S( knx,

k
ny

ω
1−ω )

m
− c

(
x, y

ω

1− ω

)]
− λc1

(
x, y

ω

1− ω

)
−W

(
x, y

ω

1− ω

)∣∣∣∣∣→ 0 a.s. .(10)

Now consider

sup
b∗≤r<∞

∣∣∣∣√m( Fn(r)

q(k/n)
− r−

1
η cω

)
− λc1

(
1

r
,
1

r

ω

1− ω

)
−W

(
1

r
,
1

r

ω

1− ω

)∣∣∣∣ .
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By some elementary calculations this can be decomposed as∣∣∣∣√m( Fn(r)

q(k/n)
− r−

1
η cω

)
− λc1

(
1

r
,
1

r

ω

1− ω

)
−W

(
1

r
,
1

r

ω

1− ω

)∣∣∣∣
≤

∣∣∣∣√m( Fn(r)

q(k/n)
− c

(n
k
Ud k

r
e,n,

n

k
Vd ω

1−ω
k
r
e,n

))
− λc1

(n
k
Ud k

r
e,n,

n

k
Vd ω

1−ω
k
r
e,n

)
−W

(n
k
Ud k

r
e,n,

n

k
Vd ω

1−ω
k
r
e,n

)∣∣∣∣
+
√
m

∣∣∣∣c(nkUd kr e,n, nk Vd ω
1−ω

k
r
e,n

)
− c

(
1

r
,
1

r

ω

1− ω

)∣∣∣∣+ λ

∣∣∣∣c1 (nkUd kr e,n, nk Vd ω
1−ω

k
r
e,n

)
− c1

(
1

r
,
1

r

ω

1− ω

)∣∣∣∣
+

∣∣∣∣W (n
k
Ud k

r
e,n,

n

k
Vd ω

1−ω
k
r
e,n

)
−W

(
1

r
,
1

r

ω

1− ω

)∣∣∣∣
=: T1 + T2 + T3 + T4. (11)

In order to analyze these terms we will use the following stochastic process property concerning
uniform order statistics from Drees and Huang (1998): for any fixed value T > 0, with W̃
denoting an almost surely continuous Gaussian process, one has

sup
0≤x≤T

∣∣∣√k (n
k
U[kx],n − x

)
+ W̃ (x, 0)

∣∣∣→ 0 a.s. , (12)

sup
0≤y≤T

∣∣∣√k (n
k
V[ky],n − y

)
+ W̃ (0, y)

∣∣∣→ 0 a.s. . (13)

We now analyze each of the terms of (11) in turn. Concerning T1 we use (10), (12) and (13) to
obtain that T1 → 0 a.s. uniformly for r ∈ [b∗,∞). For T2, by the mean value theorem

T2 = cx(Ũr, Ṽr)
√
m

(
n

k
Ud k

r
e,n −

1

r

)
+ cy(Ũr, Ṽr)

√
m

(
n

k
Vd ω

1−ω
k
r
e,n −

1

r

ω

1− ω

)
,

with cx and cy denoting the partial derivatives of c with respect to x and y, respectively, Ũr
being a random value between n

kUd k
r
e,n and 1/r, and Ṽr a random value between n

kVd ω
1−ω

k
r
e,n

and 1
r

ω
1−ω . Using the continuity of cx and cy, (12) and (13), and the fact that m = o(k) in case

η < 1 (Draisma et al., 2004), we have that T2 → 0 a.s. uniformly. Finally, for T3 and T4 we use
the continuity of c1 and W , (12) and (13), to get that T3 → 0 a.s. and T4 → 0 a.s. uniformly
on r ∈ [b∗,∞).

Thus we have

√
m

(
Fn(r)

q(k/n)
− r−

1
η cω

)
b∗≤r<∞

−→
(
W

(
1

r
,
1

r

ω

1− ω

)
+ λc1

(
1

r
,
1

r

ω

1− ω

))
b∗≤r<∞

weakly in D[b∗,∞).

Using the function c1 for model (2), see also the proof of Lemma 1, we obtain

√
m

(
Fn(r)

q(k/n)
− r−

1
η cω

)
b∗≤r<∞

−→
(
W

(
1

r
,
1

r

ω

1− ω

)
+ λr

− 1
η cω

r−τξω − 1

τ

)
b∗≤r<∞
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weakly in D[b∗,∞). Thus, this implies in particular that

√
m

(
Fn(r−η)

q(k/n)
− r cω

)
0<r≤b′

−→
(
W

(
rη, rη

ω

1− ω

)
+ λrcω

rητξω − 1

τ

)
0<r≤b′

weakly in D(0, b′]. By inversion, using Vervaat’s lemma (Vervaat, 1972) we have

√
m

([
F
←
n (tq(k/n))

]−1/η − t

cω

)
0<t≤cωb′

−→ − 1

cω

W (
tη

cηω
,
tη

cηω

ω

1− ω

)
+ λt

(
t
cω

)ητ
ξω − 1

τ


0<t≤cωb′

=: − 1

cω

(
W

(
t

cω

)
+ λt

( t
cω

)ητξω − 1

τ

)
0<t≤cωb′

(14)

weakly in D(0, cωb
′].

Using the fact that W (xη, xη) is a Brownian motion, we can infer that it is also the case for
W (x/cω). Indeed, it has zero mean and it is such that

E
(
W

(
t1
cω

)
W

(
t2
cω

))
= E

(
W

(
tη1
cηω
,
tη1
cηω

ω

1− ω

)
W

(
tη2
cηω
,
tη2
cηω

ω

1− ω

))
= c

(
tη1
cηω
∧ tη2
cηω
,
tη1
cηω

ω

1− ω
∧ tη2
cηω

ω

1− ω

)
= c

(
1

cηω
(t1 ∧ t2)η,

ω

1− ω
1

cηω
(t1 ∧ t2)η

)
=

t1 ∧ t2
cω

c

(
1,

ω

1− ω

)
= t1 ∧ t2.

Recall now that F
←
n (tq(k/n)) = k

nQn(t). Thus (14) combining with the delta method leads to∣∣∣∣∣∣√m
(
k

n
Qn(t)−

(
t

cω

)−η)
− ηt−(η+1)cηωW

(
t

cω

)
− λη

(
t

cω

)−η ( t
cω

)ητ
ξω − 1

τ

∣∣∣∣∣∣ = oP(1).

Now, following the lines of proof of Lemma 6.2 in Draisma et al. (2004), with some adjustments
due to our different model, we can deduce that for all t0, ε > 0:

sup
0<t≤t0

tη+
1
2
+ε

∣∣∣∣∣∣√m
(
k

n
Qn(t)−

(
t

cω

)−η)
− ηt−(η+1)cηωW

(
t

cω

)
− λη

(
t

cω

)−η ( t
cω

)ητ
ξω − 1

τ

∣∣∣∣∣∣ = oP(1).

Proof of Theorem 2

From Theorem 1, we can deduce that

Qn(t) =
n

k

(
t

cω

)−η 1 +
η

t
√
m
W

(
t

cω

)
+ λ

η√
m

(
t
cω

)ητ
ξω − 1

τ
+ oP

(
t−(

1
2
+ε)

√
m

) . (15)
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In order to study the statistics A
(i)
m,n(si), i = 1, 2, 3, we use a Taylor expansion of each integrand

and thus we need that all the terms appearing in the square parenthesis in (15) tend to 0 uni-
formly. To this aim, we have to split the integrals into two parts, from 0 to m−κ and from m−κ

to 1, for a suitable κ ∈ (0, 1/(1 + 2ε)). A similar argument was used in Section 3.6.2 of de Haan
and Ferreira (2006).

Assuming κ > 1/2, we clearly have
∫m−κ
0

(
Qn(t)
Qn(1)

)s1
dt = oP(1/

√
m). Also, for ε < 0.5

∫ 1

m−κ

(
Qn(t)

Qn(1)

)s1
dt =

∫ 1

m−κ
t−ηs1

[
1 +

(
− s1η√

m
W

(
1

cω

)
− λ s1η√

m

c−ητω ξω − 1

τ

+
s1η

t
√
m
W

(
t

cω

)
+ λ

s1η√
m

( t
cω

)ητξω − 1

τ
+ oP

(
t−(

1
2
+ε)

√
m

))
(1 + oP(1))

]
dt

where the oP(1)−term is uniform. Thus∫ 1

m−κ

(
Qn(t)

Qn(1)

)s1
dt =

1

1− ηs1
− λ s1η

2

(1− ηs1)(1− η(s1 − τ))

1√
m
c−ητω ξω

+
s1η√
m

∫ 1

0
t−(1+ηs1)W

(
t

cω

)
dt− ηs1

1− ηs1
1√
m
W

(
1

cω

)
+ oP(m−1/2).

This yields

√
m

(
A(1)
m,n(s1)−

1

1− ηs1

)
= s1η

∫ 1

0
t−(1+ηs1)W

(
t

cω

)
dt− ηs1

1− ηs1
W

(
1

cω

)
−λ s1η

2

(1− ηs1)(1− η(s1 − τ))
ξωc
−ητ
ω + oP(1).

Similarly, we can derive that

√
m

(
A(2)
m,n(s2)−

η

(1− ηs2)2

)
= −s2η2

∫ 1

0
t−(1+ηs2) log tW

(
t

cω

)
dt

+η

∫ 1

0
t−(1+ηs2)W

(
t

cω

)
dt− η

(1− ηs2)2
W

(
1

cω

)
−λ η2(1 + ητ − η2s22)

(1− ηs2)2(1− η(s2 − τ))2
ξωc
−ητ
ω + oP(1).

Here we used, setting m−κ = j/m,

√
m

∫ m−κ

0

(
Qn(t)

Qn(1)

)s2
log

Qn(t)

Qn(1)
dt ≤ m1/2−κ(log Z̃ω,n,n − log Z̃ω,n−m,n),

with, from (15),

log Z̃ω,n−m,n = OP(log n/k) and log Z̃ω,n,n = OP(log n/k + logm).
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Keeping in mind that k/n = q←(m/n) with q being regularly varying at zero, the result follows.

By the same arguments,

√
m

(
A(3)
m,n(s3)−

2η2

(1− ηs3)3

)
= s3η

3

∫ 1

0
t−(1+ηs3) (log t)2W

(
t

cω

)
dt

−2η2
∫ 1

0
t−(1+ηs3) log tW

(
t

cω

)
dt− 2

η2

(1− ηs3)3
W

(
1

cω

)
−2λ

η2

τ
ξωc
−ητ
ω

[
1

(1− ηs3)3
− 1 + ητ

(1− η(s3 − τ))3

]
+ oP(1).

The asymptotic variances and covariances can be obtained from straightforward but tedious
calculations, and are therefore omitted from the paper.
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