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LOCAL ROBUST ESTIMATION OF THE PICKANDS DEPENDENCE
FUNCTION
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University of Southern Denmark: and Université de Strasbourg et CNRS;

We consider the robust estimation of the Pickands dependence
function in the random covariate framework. Our estimator is based
on local estimation with the minimum density power divergence cri-
terion. We provide the main asymptotic properties, in particular the
convergence of the stochastic process, correctly normalized, towards
a tight centered Gaussian process. The finite sample performance of
our estimator is evaluated with a simulation study involving both un-
contaminated and contaminated samples. The method is illustrated
on a dataset of air pollution measurements.

1. Introduction. Modelling dependence among extremes is of primary importance in prac-
tical applications where extreme phenomena occur. To this aim, the copula function can be used
as a margin-free description of the dependence structure. Indeed, according to the well-known
result of Sklar (1959), the distribution function of a pair pY p1q, Y p2qq can be represented in terms
of the two margins F1 and F2 of Y p1q and Y p2q respectively, and a copula function C as follows:

P
´

Y p1q ď y1, Y
p2q ď y2

¯

“ C pF1py1q, F2py2qq .

This function C characterizes the dependence between Y p1q and Y p2q and is called an extreme
value copula if and only if it admits a representation of the form

Cpy1, y2q “ exp

ˆ

logpy1y2qA

ˆ

logpy2q

logpy1y2q

˙˙

,

where A: r0, 1s Ñ r1{2, 1s is the Pickands dependence function, which is convex and satisfies
maxtt, 1´ tu ď Aptq ď 1, see Pickands (1981). Statistical inference on the bivariate function C
is therefore equivalent to the statistical inference on the one-dimensional function A. Estimating
this function A has been extensively studied in the literature. We can mention, among others,
Capéraà, Fougères and Genest (1997), Fils-Villetard, Guillou and Segers (2008) or Bücher, Dette
and Volgushev (2011).

In this paper, we extend the above framework to the case where the pair pY p1q, Y p2qq is recorded
along with a random covariate X P Rp. In that context, the copula function together with the
marginal distribution functions depend on the covariate X. In the sequel, we denote by Cx,
F1p.|xq and F2p.|xq the conditional copula function and the continuous conditional distribution
functions of Y p1q and Y p2q given X “ x. Our model can thus be written as

P
´

F1pY
p1q|xq ď y1, F2pY

p2q|xq ď y2

ˇ

ˇ

ˇ
X “ x

¯

“ Cxpy1, y2q,(1.1)
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where Cx admits a representation of the form

Cxpy1, y2q “ exp

ˆ

logpy1y2qA

ˆ

logpy2q

logpy1y2q

ˇ

ˇ

ˇ
x

˙˙

,

with Ap.|.q : r0, 1sˆRp Ñ r1{2, 1s is the conditional Pickands dependence function which is again
a convex function satisfying maxtt, 1 ´ tu ď Apt|xq ď 1 for all x P Rp. From a practical point
of view, the considered family of extreme value distributions has sufficiently large potential for
data analysis. Firstly, the family of extreme value distributions is very rich, and includes among
others the logistic, the asymmetric logistic, the negative logistic, the Hüsler-Reiss, the t extreme
value, and Dirichlet model. Secondly, multivariate extreme value distributions arise naturally
as the limiting distributions of properly normalised component-wise maxima, making them a
useful approximation to the true, but typically unknown, distribution of these component-wise
maxima in practice. We refer to Kotz and Nadarajah (2000) and Gudendorf and Segers (2010)
for further motivation and discussion of this class of distributions and additional examples. As
a possible application, we consider modelling extremal dependence between air pollutants, like
ground-level ozone and particulate matter, conditional on location and time; see Section 5 for
more details.

Moreover, in addition to the covariate context, we consider the case of contamination and we
propose a robust estimator of the conditional Pickands dependence function Ap.|xq. To reach
this goal, we use the density power divergence method introduced by Basu et al. (1998). In
particular, the density power divergence between two density functions g and h is defined as
follows

∆αpg, hq :“

$

’

’

&

’

’

%

ż

R

„

h1`αpyq ´

ˆ

1`
1

α

˙

hαpyqgpyq `
1

α
g1`αpyq



dy, α ą 0,
ż

R
log

gpyq

hpyq
gpyqdy, α “ 0.

Here the density function h is assumed to depend on a parameter vector θ, and if Z1, ..., Zn is
a sample of independent and identically distributed random variables according to the density
function g, then the minimum density power divergence estimator (MDPDE) of θ is the point pθ
minimizing the empirical version (up to a constant independent of θ)

p∆αpθq :“

$

’

’

’

&

’

’

’

%

ż

R
h1`αpyqdy ´

ˆ

1`
1

α

˙

1

n

n
ÿ

i“1

hαpZiq, α ą 0,

´
1

n

n
ÿ

i“1

log hpZiq α “ 0.

We can observe that for α “ 0 one recovers the log-likelihood function, up to the sign. A large
value of α allows us to increase the robustness of the estimator, whereas a smaller value implies
more efficiency. This parameter α can thus be selected in order to ensure a trade-off between
these two antagonist concepts.

The nonparametric estimation of extremal dependence in presence of random covariates is
still in its infancy, despite the huge potential of such methods for practical data analysis. Gardes
and Girard (2015) introduce an estimator for the tail copula based on a random sample from
a distribution in the max-domain of attraction of an extreme value distribution, and provide a
finite dimensional convergence result for their estimator, when properly normalised. Portier and
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Segers (2015) considered model (1.1) but under the simplifying assumption that the dependence
between Y p1q and Y p2q does not depend on the value taken by the covariate, i.e. Cx “ C (see also
Gijbels, Omelka and Veraverbeke, 2015). In the present paper we introduce a nonparametric and
robust estimator for Ap.|xq which is obtained by an adjustment of the above introduced density
power divergence estimation criterion to the situation of local estimation, and we study the
asymptotic properties of the obtained estimator in terms of stochastic process convergence. To
the best of our knowledge, nonparametric and robust estimation of the conditional Pickands
dependence function has not been considered in the literature.

The remainder of the paper is organized as follows. In Section 2, we simplify the situation
to the case where the two marginal distributions are known, we propose a robust estimator for
Ap.|xq and prove its convergence in terms of a stochastic process. Then, in Section 3, we extend
this result to the case of unknown margins. The efficiency and robustness of the estimator are
examined with a simulation study, described in Section 4. Finally, in Section 5 we illustrate the
practical applicability of the method for modelling extremal dependence between air pollution
measurements. Additional simulation results are available in the online supplementary material.
All the proofs are postponed to the Appendix.

2. Case of known margins. We denote by f the density function of the covariate X and
by x0 a reference position such that x0 P IntpSXq, the interior of the support SX of f . In this
section, we restrict our interest to the case where the marginals F1p.|xq and F2p.|xq are known,
and we denote by A0p.|xq the true conditional Pickands dependence function associated to the
pair pY p1q, Y p2qq.

2.1. Construction of the estimator. For convenience we reformulate the model (1.1) into
standard exponential margins. After applying the transformations rY pjq “ ´ logFjpY

pjq|xq, j “
1, 2, we obtain the following bivariate survival function

Gpy1, y2|xq :“ P
´

rY p1q ą y1, rY
p2q ą y2

ˇ

ˇ

ˇ
X “ x

¯

“ exp

ˆ

´py1 ` y2qA0

ˆ

y2

y1 ` y2

ˇ

ˇ

ˇ
x

˙˙

,

for all y1, y2 ą 0. Let t P r0, 1s. Considering the univariate random variable

Zt :“ min

˜

rY p1q

1´ t
,
rY p2q

t

¸

,

it is clear that

PpZt ą z|X “ xq “ e´zA0pt|xq, @z ą 0 and x P Rp.

Consequently, the conditional distribution of Zt given X “ x is an exponential distribution with
parameter A0pt|xq.

Let pZt,i, Xiq, i “ 1, . . . , n, be independent copies of the random pair pZt, Xq. In the present
paper, we will develop a nonparametric robust estimator for A0pt|x0q by fitting this exponential
distribution function locally to the variables Zt,i, i “ 1, ..., n, by means of the MDPD criterion,
adjusted to locally weighted estimation, i.e. we minimize for α ą 0

p∆α,x0,tpaq :“
1

n

n
ÿ

i“1

Khpx0 ´Xiq

"
ż 8

0

`

ae´az
˘1`α

dz ´

ˆ

1`
1

α

˙

`

ae´aZt,i
˘α
*

“
aα

n

n
ÿ

i“1

Khpx0 ´Xiq

"

1

1` α
´

ˆ

1`
1

α

˙

e´αaZt,i
*

.(2.1)
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Here Khp.q :“ Kp.{hq{hp where K is a joint density on Rp and h “ hn is a positive non-
random sequence satisfying hn Ñ 0 as nÑ8. The MDPDE pAα,npt|x0q for A0pt|x0q satisfies the
estimating equation

p∆
p1q
α,x0,t

p pAα,npt|x0qq “ 0,(2.2)

where p∆
pjq
α,x0,t

p.q denotes the derivative of order j of p∆α,x0,tp.q. The minimization of p∆α,x0,t is

here performed without constraints, which means that pAα,np.|x0q does not automatically satisfy
the conditions of the Pickands dependence function. In fact, this is the case for several of the
estimators proposed in the literature, see e.g. Pickands (1981), Deheuvels (1991) or Capéraà,
Fougères and Genest (1997). To overcome this, one could follow the idea of Fils-Villetard, Guillou
and Segers (2008), and project the obtained estimator onto the space of Pickands dependence
functions.

Our aim in this paper is to show the weak convergence of the stochastic process

!?
nhp

´

pAα,npt|x0q ´A0pt|x0q

¯

, t P r0, 1s
)

,(2.3)

in the space of all continuous functions on r0, 1s, denoted as Cpr0, 1sq, when nÑ8.
Our starting point is the estimating equation (2.2). By applying a Taylor series expansion

around the true value A0pt|x0q, we get

0 “ p∆
p1q
α,x0,tpA0pt|x0qq `

´

pAα,npt|x0q ´A0pt|x0q
¯

p∆
p2q
α,x0,tpA0pt|x0qq `

1

2

´

pAα,npt|x0q ´A0pt|x0q
¯2

p∆
p3q
α,x0,tp

rApt|x0qq

where rApt|x0q is a random value between A0pt|x0q and pAα,npt|x0q. A straightforward rearrange-
ment of the above display gives

?
nhp

´

pAα,npt|x0q ´A0pt|x0q
¯

“
´
?
nhp p∆

p1q
α,x0,tpA0pt|x0qq

p∆
p2q
α,x0,tpA0pt|x0qq `

1
2
p∆
p3q
α,x0,tp

rApt|x0qq
´

pAα,npt|x0q ´A0pt|x0q
¯ .(2.4)

Consequently, in order to obtain the convergence of the stochastic process (2.3), we need to

study the properties of the derivatives p∆
pjq
α,x0,t

, j “ 1, 2, 3. According to Appendix A.5, these can
be expressed as a linear combination of a key statistic Tn, defined as

TnpK, a, t, λ, β, γ|x0q :“
aγ

n

n
ÿ

i“1

Khpx0 ´XiqZ
β
t,ie

´λaZt,i ,(2.5)

for a P r1{2, 1s, t P r0, 1s, λ, β ě 0 and γ P R.

2.2. Asymptotic properties of Tn. Due to the regression context, we need some Hölder-type
conditions on the density function f and on the conditional Pickands dependence function A0.
Let }.} be some norm on Rp, and denote by Bxprq the closed ball with respect to }.} centered
at x and radius r ą 0.
Assumption pDq. There exist Mf ą 0 and ηf ą 0 such that |fpxq ´ fpzq| ď Mf }x´ z}ηf , for
all px, zq P SX ˆ SX .
Assumption pA0q. There exist MA0 ą 0 and ηA0 ą 0 such that |A0pt|xq ´A0pt|zq| ďMA0}x´
z}ηA0 , for all px, zq P Bx0prq ˆBx0prq, r ą 0 and t P r0, 1s.
Also a usual condition is assumed on the kernel K.
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Assumption pK1q. K is a bounded density function on Rp with support SK included in the unit
ball of Rp with respect to the norm }.}.

As a preliminary result, in Lemma 2.1 we prove the convergence in probability of the key
statistic Tn.

Lemma 2.1. Assume that for all t P r0, 1s, x Ñ A0pt|xq and the density function f are both
continuous at x0 P IntpSXq non-empty. Under Assumption pK1q, if h Ñ 0 and nhp Ñ 8, then
for a P r1{2, 1s, λ, β ě 0, γ P R and x0 such that fpx0q ą 0, we have

TnpK, a, t, λ, β, γ|x0q
P
ÝÑaγΓpβ ` 1q

A0pt|x0q

pλa`A0pt|x0qq
β`1

fpx0q,

as nÑ8, where Γ is the gamma function defined as Γprq :“
ş8

0 tr´1e´tdt,@r ą 0.

Now, our interest is in the rate of convergence in Lemma 2.1 when a is replaced by A0pt|x0q.
More precisely, we want to show the weak convergence of the stochastic process

"

?
nhp

ˆ

TnpK,A0pt|x0q, t, λ, β, γ|x0q ´ Γpβ ` 1q
rA0pt|x0qs

γ´β

pλ` 1qβ`1
fpx0q

˙

, t P r0, 1s

*

.

To establish such a result, we use empirical processes arguments based on the theory of Vapnik-
Červonenkis classes (VC -classes) of functions as formulated in van der Vaart and Wellner (1996).
This allows us to show the following theorem.

Theorem 2.1. Let γ P R and pλ, βq P p0,8qˆR` or pλ, βq “ p0, 0q. Under the assumptions
of Lemma 2.1 and if pDq and pA0q hold with

?
nhphminpηf ,ηA0

q Ñ 0, then the process
"

?
nhp

ˆ

TnpK,A0pt|x0q, t, λ, β, γ|x0q ´ Γpβ ` 1q
rA0pt|x0qs

γ´β

pλ` 1qβ`1
fpx0q

˙

, t P r0, 1s

*

weakly converges in Cpr0, 1sq towards a tight centered Gaussian process tBt, t P r0, 1su with co-
variance structure given by

CovpBt, Bsq “ rA0pt|x0qA0ps|x0qs
γ}K}22 fpx0q ˆ

#

ż

R2
`

gpu, vqGt,spu, v|x0qdudv `
1´ λ

1` λ
δ0pβq

+

,

for all ps, tq P r0, 1s2, where δ0 is the Dirac measure on 0, and

gpu, vq :“ uβ´1pβ ´ λA0pt|x0quqe
´λA0pt|x0qu vβ´1pβ ´ λA0ps|x0qvqe

´λA0ps|x0qv,

Gt,spu, v|x0q :“ G
´

maxpp1´ tqu, p1´ sqvq,maxptu, svq
ˇ

ˇ

ˇ
x0

¯

.

We now derive the limiting distribution of a vector of statistics of the form (2.5), when properly
normalized. Let Tn be a pmˆ 1q vector defined as

Tn :“ pTnpK,A0pt1|x0q, t1, λ1, β1, γ1|x0q, ..., TnpK,A0ptm|x0q, tm, λm, βm, γm|x0qq
T ,

for some positive integer m and let Σ be a pmˆmq covariance matrix with elements pσj,kq1ďj,kďm
defined as

σj,k :“ rA0ptj |x0qs
γj rA0ptk|x0qs

γk}K}22 fpx0q ˆ

#

ż

R2
`

gj,kpu, vqGtj ,tkpu, v|x0qdudv

` δ0pβjq
Γpβk ` 1q

rλk ` 1sβk`1rA0ptk|x0qs
βk
` δ0pβkq

Γpβj ` 1q

rλj ` 1sβj`1rA0ptj |x0qs
βj
´ δ0pβjqδ0pβkq

*

(2.6)
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where

gj,kpu, vq :“ uβj´1 rβj ´ λjA0ptj |x0qus e
´λjA0ptj |x0qu vβk´1 rβk ´ λkA0ptk|x0qvs e

´λkA0ptk|x0qv.

The aim of next theorem is to provide the finite dimensional convergence result which will,
together with the tightness, allow us to establish the joint convergence of several processes
related to the statistic Tn.

Theorem 2.2. Under the assumptions of Lemma 2.1, we have

?
nhp pTn ´ ErTnsq Nm p0,Σq ,

where Nm denotes a m´dimensional normal distribution.

We have now all the needed ingredients for proving the asymptotic properties of the MDPDE
pAα,npt|x0q.

2.3. Asymptotic properties of pAα,npt|x0q. The first result states the existence and uniform
consistency of a sequence of solutions to the estimating equation (2.2).

Theorem 2.3. Let α ą 0. Under the assumptions of Theorem 2.1, with probability tending

to 1, there exists a sequence
´

pAα,npt|x0q

¯

nPN
of solutions for the estimating equation (2.2) such

that

sup
tPr0,1s

ˇ

ˇ

ˇ

pAα,npt|x0q ´A0pt|x0q

ˇ

ˇ

ˇ
“ oPp1q.

Now, we come back to our final goal which is the weak convergence of the stochastic process
(2.3).

Theorem 2.4. Let
´

pAα,npt|x0q

¯

nPN
be the consistent sequence defined in Theorem 2.3. Un-

der the assumptions of Theorem 2.1, the process

!?
nhp

´

pAα,npt|x0q ´A0pt|x0q

¯

, t P r0, 1s
)

weakly converges in Cpr0, 1sq towards a tight centered Gaussian process tNt, t P r0, 1su with
covariance structure given by

Cov pNt, Nsq “
}K}22A0pt|x0qA0ps|x0q

fpx0q

p1` αq2

p1` α2q2
vTαΣpt, sqvα,

where

vα :“

¨

˚

˝

α

1` α
´p1` αq

1` α

˛

‹

‚

and Σpt, sq :“

¨

˝

p1` αq2 1` α 1
1` α Σ2,2pt, sq Σ2,3pt, sq

1 Σ2,3ps, tq Σ3,3pt, sq

˛

‚
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with

Σ2,2pt, sq :“ p1´ αqp1` αq ` α2
p1` αq2A0pt|x0qA0ps|x0q

ż

R2
`

e´αrA0pt|x0qu`A0ps|x0qvsGt,spu, v|x0qdudv

Σ2,3pt, sq :“ 1´ αp1` αq2A0pt|x0qA0ps|x0q

ż

R2
`

p1´ αA0ps|x0qvqe
´αrA0pt|x0qu`A0ps|x0qvsGt,spu, v|x0qdudv

Σ3,3pt, sq :“ p1` αq2A0pt|x0qA0ps|x0q

ż

R2
`

p1´ αA0pt|x0quqp1´ αA0ps|x0qvqe
´αrA0pt|x0qu`A0ps|x0qvsGt,spu, v|x0qdudv.

In particular, for all t P r0, 1s, we have

?
nhp

´

pAα,npt|x0q ´A0pt|x0q
¯

 N1

ˆ

0,
}K}22rA0pt|x0qs

2

fpx0q

p1` αq2p1` 4α` 9α2
` 14α3

` 13α4
` 8α5

` 4α6
q

p1` 2αq3p1` α2q2

˙

,

as nÑ8.

The asymptotic standard deviation is shown as a function of α in Figure S1 of the supple-
mentary material. As is clear from this plot, the asymptotic standard deviation is increasing in
α. Note that our results could also be obtained under different assumptions by using the local
empirical process results of Stute (1986) and Einmahl and Mason (1997), combined with the
functional delta method.

3. Case of unknown margins. In this section, we consider the general framework where
both F1p.|xq and F2p.|xq are unknown conditional distribution functions. We want to mimic
what has been done in the previous section and transform to standard exponential margins. To
this aim, we consider the triplets

´

´ log
´

Fn,1pY
p1q
i |Xiq

¯

,´ log
´

Fn,2pY
p2q
i |Xiq

¯

, Xi

¯

, i “ 1, ..., n,

for suitable estimators Fn,j of Fj , j “ 1, 2, and we compute the univariate random variables

qZn,t,i :“ min

¨

˝

´ log
´

Fn,1pY
p1q
i |Xiq

¯

1´ t
,
´ log

´

Fn,2pY
p2q
i |Xiq

¯

t

˛

‚, i “ 1, ..., n.

Then, similarly as in Section 2, the statistic

qTnpK, a, t, λ, β, γ|x0q :“
aγ

n

n
ÿ

i“1

Khpx0 ´Xiq qZ
β
n,t,ie

´λa qZn,t,i ,(3.1)

is the cornerstone for the MDPDE, denoted qAα,npt|x0q, which satisfies the estimating equation

q∆
p1q
α,x0,t

p qAα,npt|x0qq “ 0,(3.2)

where q∆
p1q
α,x0,t

p.q is the first derivative of q∆α,x0,tp.q and

q∆α,x0,tpaq :“
aα

n

n
ÿ

i“1

Khpx0 ´Xiq

"

1

1` α
´

ˆ

1`
1

α

˙

e´αa
qZn,t,i

*

.

The final goal is still the same, that is the weak convergence of the stochastic process
!?

nhp
´

qAα,npt|x0q ´A0pt|x0q

¯

, t P r0, 1s
)

.(3.3)
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Again this result relies essentially on the asymptotic properties of the statistic qTn, and so the
idea will be to decompose

?
nhp

´

qTn ´ Er qTns
¯

pK, a, t, λ, β, γ|x0q,

into the two terms
!?

nhp pTn ´ ErTnsq pK, a, t, λ, β, γ|x0q
)

`

!?
nhp

´

r qTn ´ Tns ´ Er qTn ´ Tns
¯

pK, a, t, λ, β, γ|x0q
)

.(3.4)

The first term can be dealt with using the results of Section 2.2, whereas we have to show that
the second term is uniformly negligible.
To achieve this objective, let us introduce the following empirical kernel estimator of the unknown
conditional distribution functions

Fn,jpy|xq :“

řn
i“1Kcpx´Xiq1ltY pjqi ďyu
řn
i“1Kcpx´Xiq

, j “ 1, 2,

where c :“ cn is a positive non-random sequence satisfying cn Ñ 0 as n Ñ 8. Here we kept
the same kernel K as in the previous section, but of course any other kernel function can be used.

Before stating our main results, we need to impose again some assumptions, in particular a
Hölder-type condition on each marginal conditional distribution function Fj similar to the one
imposed on the density function of the covariate.
Assumption pFq. There exist MFj ą 0 and ηFj ą 0 such that |Fjpy|xq ´ Fjpy|zq| ď MFj}x ´
z}
ηFj , for all y P R and all px, zq P SX ˆ SX , and j “ 1, 2.

Concerning the kernel K a stronger assumption than pK1q is needed.
Assumption pK2q. K satisfies Assumption pK1q, there exists δ,m ą 0 such that B0pδq Ă SK
and Kpuq ě m for all u P B0pδq, and K belongs to the linear span (the set of finite linear
combinations) of functions k ě 0 satisfying the following property: the subgraph of k, tps, uq :
kpsq ě uu, can be represented as a finite number of Boolean operations among sets of the form
tps, uq : qps, uq ě ϕpuqu, where q is a polynomial on Rp ˆR and ϕ is an arbitrary real function.
The latter assumption has already been used in Giné and Guillou (2002) or Giné, Koltchinskii
and Zinn (2004). In particular, it allows us to measure the discrepancy between the conditional
distribution function Fj and its empirical kernel version Fn,j .

Lemma 3.1. Assume that there exists b ą 0 such that fpxq ě b,@x P SX Ă Rp, f is bounded,
and pK2q and pFq hold. Consider a sequence c tending to 0 as nÑ8 such that for some q ą 1

| log c|q

ncp
ÝÑ 0.

Also assume that there exists an ε ą 0 such that for n sufficiently large

inf
xPSX

λ ptu P B0p1q : x´ cu P SXuq ą ε,(3.5)

where λ denotes the Lebesgue measure. Then, for any 0 ă η ă minpηF1 , ηF2q, we have

sup
py,xqPRˆSX

|Fn,jpy|xq ´ Fjpy|xq| “ oP

˜

max

˜

c

| log c|q

ncp
, cη

¸¸

, for j “ 1, 2.
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Note that the assumption fpxq ě b,@x P SX , for some b ą 0, is similar to the one already
used in Gijbels, Omelka and Veraverbeke (2015) and Portier and Segers (2015).

We are now able to study the second term in (3.4).

Theorem 3.1. Assume that there exists b ą 0 such that fpxq ě b,@x P SX Ă Rp, f is
bounded, and pK2q, pDq and pFq hold together with condition (3.5). Consider two sequences h
and c tending to 0, such that for nhp Ñ8 and for some q ą 1 and any 0 ă η ă minpηF1 , ηF2q

?
nhp rn :“

?
nhp max

˜

c

| log c|q

ncp
, cη

¸

ÝÑ 0,

as nÑ8. Then, for all γ P R and pλ, βq P p0,8q ˆ R` or pλ, βq “ p0, 0q, we have

sup
tPr0,1s,aPr1{2,1s

?
nhp

ˇ

ˇ

ˇ

qTn ´ Tn ´ E
”

qTn ´ Tn

ıˇ

ˇ

ˇ
pK, a, t, λ, β, γ|x0q “ oPp1q.

Finally, the decomposition (3.4) combined with Theorem 3.1 and the results from Section 2.2,
yields the desired theoretical result of this paper.

Theorem 3.2. Let α ą 0. Under the assumptions of Theorem 3.1 and pA0q, with probability

tending to 1, there exists a sequence
´

qAα,npt|x0q

¯

nPN
of solutions for the estimating equation

(3.2) such that

sup
tPr0,1s

ˇ

ˇ

ˇ

qAα,npt|x0q ´A0pt|x0q

ˇ

ˇ

ˇ
“ oPp1q.

Moreover, for this consistent sequence, if
?
nhphminpηf ,ηA0

q Ñ 0, the process

!?
nhp

´

qAα,npt|x0q ´A0pt|x0q

¯

, t P r0, 1s
)

weakly converges in Cpr0, 1sq towards the tight centered Gaussian process tNt, t P r0, 1su defined
in Theorem 2.4.

4. Simulation study. Our aim in this section is to illustrate the efficiency of the proposed
robust estimator for the conditional Pickands dependence function with a simulation study. We
assume that the conditional distribution function of pY p1q, Y p2qq given X “ x is a mixture model
of the form

Fεpy1, y2|xq “ p1´ εqF`py1, y2|xq ` εFcpy1, y2|xq,

where ε P r0, 1s represents the fraction of contamination in the dataset. The main distribution
F` is the logistic distribution given by

F`py1, y2|xq :“ exp
!

´

´

y
´1{x
1 ` y

´1{x
2

¯x)

, for y1, y2 ě 0

and

A0pt|xq “
´

t1{x ` p1´ tq1{x
¯x
,
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where the covariate X is a uniformly distributed random variable on r0, 1s. For this model,
complete dependence is obtained in the limit as x Ó 0, whereas independence can be reached for
x “ 1. Note also that the conditional marginal distributions of Y pjq given X, j “ 1, 2, under this
logistic model are unit Fréchet distributions. Moreover, we can check that this model satisfies
conditions pDq, pA0q and pFq. Two completely different types of distributions Fc will be consid-
ered throughout the paper and additional examples will be given in the online supplementary
material.
‚ First type of contamination: Given X “ x, the distribution function Fc is

Fcpy1, y2|xq “
1

2

!

e´y
´1
1 ` e´y

´1
2

)

1lty1ě0,y2ě0u.

The mixture based on this distribution Fc is illustrated in Figure S2 of the supplementary
material. For this mixture, the contaminated points are on the axes.
‚ Second type of contamination: The distribution function Fc has completely dependent

unit exponential margins. Figure S3 in the supplementary material shows an example of a sim-
ulated dataset from this model. This time, the contaminated points are on the diagonal.

To compute the estimator qAα,n, two sequences h and c have to be chosen. Both are determined
by a cross validation criterion. Because of the very high computational burden of the cross
validations for sample sizes n ě 1000, a random selection of size nr :“ n ^ 1000 from the

original observations is obtained, denoted tpY
p1q
i,r , Y

p2q
i,r , Xi,rqui“1,...,nr , and the cross validations

are implemented on these random subsamples. Concerning c, we can use the following cross
validation criterion, already used in an extreme value context by Daouia et al. (2011):

cj :“ arg min
rcjPC

nr
ÿ

i“1

nr
ÿ

k“1

„

1l!
Y
pjq
i,r ďY

pjq
k,r

) ´ rFnr,´i,jpY
pjq
k,r |Xi,rq

2

, j “ 1, 2,

where C is a grid of values of rcj and rFnr,´i,jpy|xq :“

řnr
k“1,k‰iKrcj px´Xk,rq1ltY pjqk,rďyu
řnr
k“1,k‰iKrcj px´Xk,rq

.

Also the bandwidth parameter h is selected using a cross validation criterion. In particular,

h :“ arg min
rhPH

1

nrM

nr
ÿ

i“1

M
ÿ

j“1

qAα,n,p´iq ptj |Xi,rq
α

ˆ

1

1` α
´

ˆ

1`
1

α

˙

e´α
qAα,n,p´iqptj |Xi,rq qZn,tj ,i,r

˙

for α ą 0

h :“ arg min
rhPH

1

nrM

nr
ÿ

i“1

M
ÿ

j“1

´ log
´

qA0,n,p´iq ptj |Xi,rq e
´ qA0,n,p´iqptj |Xi,rq qZn,tj ,i,r

¯

for α “ 0

where qAα,n,p´iqpt|xq denotes the estimator of A0pt|xq obtained on all but observation i, qZn,tj ,i,r

is as qZn,tj ,i but now calculated for pY
p1q
i,r , Y

p2q
i,r , Xi,rq, and

qA0,npt|xq :“

řn
i“1Krh

px´Xiq
řn
i“1Krh

px´Xiq qZt,i
.

This criterion can be seen as a generalisation of a commonly used cross validation from the
context of local likelihood estimation (see e.g. Abegaz, Gijbels and Veraverbeke, 2012) to the
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context of local MDPD estimation.

After extensive simulation studies, we have chosen the grids C “ t0.06, 0.12, . . . , 0.3u and
H “ t0.02, 0.03, . . . , 0.06u. These choices provide a reasonable trade off between stability of the
estimates and accuracy of approximation by asymptotic results.

Concerning the kernel, each time we use the bi-quadratic function

Kpxq :“
15

16
p1´ x2q21lr´1,1spxq.

As an indicator of efficiency, we compute over a grid the L2-error in the estimation of the
Pickands dependence function Ap.|xq as a function of x, i.e.

MISEpε, α|xq :“
1

NM

N
ÿ

i“1

M
ÿ

m“1

”

qApiqα,ε,nptm|xq ´A0ptm|xq
ı2
.

Here qA
piq
α,ε,nptm|xq is our estimator of A0ptm|xq obtained with the i´th sample when the contam-

ination is ε. We set tm “ m{50, m “ 1, . . . , 49. Our simulations are based on datasets of sizes
n “ 1000 and n “ 5000, and the procedure is repeated N “ 200 times.

Figure 1 represents the MISEpε, α|xq as a function of ε P t0, 0.025, 0.05, ..., 0.2u for the two
types of contamination (rows 1 and 2, and 3 and 4, respectively). From the left to the right,
three positions have been considered: x “ 0.1, 0.3 and 0.5 for the first type of contamination and
x “ 0.5, 0.7 and 0.9 for the second type. Also, four different values of α have been reported: 0
(black), 0.1 (blue), 0.5 (green) and 1 (red), and two sample sizes: n “ 1000 and n “ 5000. Based
on these simulations, we can draw the following conclusions:

• As expected, the MISE curves show less variability for n “ 5000 compared to n “ 1000;
• If the percentage of contamination ε is very small (in the range 0 - 0.025), the MISE

indicators are typically very similar, whatever the value of α. This result is a nice feature
of our method, because if there is almost no contamination then in principle one does not
need a robust procedure, but as is clear from these figures, the MDPDE performs similarly
to the maximum likelihood method (corresponding to α “ 0), which is efficient (but not
robust);
• If we increase the percentage of contamination ε, then it is crucial to increase the value

of α to 0.5 or 1 in order to have good results. Indeed, for increasing ε a small value of α
implies a drastic increase of the MISE;
• The MISE values are almost constant for α “ 0.5 and 1, whatever the percentage of

contamination. This illustrates again the robustness of our method, since it means that the
methodology can handle a quite large percentage of contamination without deterioration
of the results;
• For the first type of contamination, the gain in MISE by taking α “ 0.5 or 1 over α “ 0 or

0.1 is more important for small x than for large x. In this case the contamination is on the
axes (independently), and this is less disturbing for x close to 1, which corresponds also
to independence, than for x close to 0, which corresponds to complete dependence. For
the second type of contamination one can observe the opposite effect. The gain of taking
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α “ 0.5 or 1 over α “ 0 or 0.1 is more important for x close to 1 than for x close to zero.
Indeed, the perfectly dependent contamination is less disturbing for small x than for large
x;
• Figure 1 gives us also some indications about the breakdown point of our estimator, which is

a common concept in the robust framework. Indeed the breakdown point can be interpreted
as the smallest ε where the MISE indicator starts to increase. For α small, in the range
0 - 0.1, the breakdown point is very small, say ε around 0.025, while for α “ 0.5 and 1,
one can go to ε “ 0.15 or a larger value, depending on the type of contamination, which
illustrates again the nice robustness property of our method.

Next to the above mentioned MISE indicators, we also used our simulated data to compute
the empirical coverage probabilities of 90% confidence intervals based on the limiting distribu-
tion given in Theorem 2.4. These are given in Tables 1 and 2 for the first and second type of
contamination, respectively. From these tables we can see that

• When ε “ 0 then the empirical coverage probabilities are generally larger than 0.90,
meaning that the confidence interval based on the limiting distribution is conservative;
• For increasing ε, the coverage probabilities generally decrease when α is small (0 or 0.1),

while for larger α, especially for α “ 1, the coverage probabilities do not seem to be as
much affected by the contamination.

Since the main objective of this paper is to estimate the conditional Pickands dependence
function Ap.|xq, we also provide in the online supplementary material the boxplots of our es-
timator qAα,np.|xq based on 200 replications for the two examples of contamination introduced
above and two additional examples. These figures emphasize again the robustness properties of
our estimator.

5. Application to air pollution data. In this section we illustrate the practical applica-
bility of our method on a dataset of air pollution measurements. Extreme temperature and high
levels of pollutants like ground-level ozone and particulate matter pose a major threat to human
health. We consider the data collected by the United States Environmental Protection Agency
(EPA), publicly available at https:{{aqsdr1.epa.gov{aqsweb{aqstmp{airdata{download files.html.
The dataset contains daily measurements on, among others, maximum temperature, and ground-
level ozone, carbon monoxide and particulate matter concentrations, for the time period 1999
to 2013. These data are collected at stations spread over the U.S. We focus the analysis on
the ground-level ozone and particulate matter concentrations. In order to estimate the extremal
dependence between these, we calculate the component-wise monthly maximum of daily maxi-
mum concentrations, and estimate the Pickands dependence function conditional on the covari-
ates time and location, where the latter is expressed by latitude and longitude. The estimation
method was implemented with the same cross validation criteria as in the simulation section,
including the same choices for C and H, after standardising the covariates to the interval r0, 1s.
As kernel function K˚ we use the following generalisation of the bi-quadratic kernel K :

K˚px1, x2, x3q :“
3
ź

i“1

Kpxiq,

where x1, x2, x3, refer to the covariates time, latitude and longitude, respectively, in standardised
form. Note that K˚ has as support the unit ball with respect to the max-norm on R3. We
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Fig 1. MISEpε, α|xq as a function of ε P t0, 0.025, 0.05, ..., 0.2u with α “ 0 (black), α “ 0.1 (blue), α “ 0.5 (green)
and α “ 1 (red). First type of contamination: rows 1 pn “ 1000q and 2 pn “ 5000q, x “ 0.1, 0.3, 0.5 from the left
to the right. Second type of contamination: rows 3 pn “ 1000q and 4 pn “ 5000q, x “ 0.5, 0.7, 0.9 from the left to
the right.
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Table 1
First type of contamination - coverage probabilities of 90% confidence intervals.

t “ 0.3 t “ 0.5 t “ 0.7
x “ 0.1 α 0 0.1 0.5 1 0 0.1 0.5 1 0 0.1 0.5 1

ε “ 0.0 0.95 0.95 0.96 0.98 0.95 0.96 0.96 0.97 0.95 0.96 0.96 0.98
n “ 1000 ε “ 0.1 0.69 0.77 0.92 0.93 0.50 0.64 0.88 0.91 0.67 0.78 0.92 0.93

ε “ 0.2 0.26 0.41 0.83 0.91 0.11 0.17 0.64 0.79 0.24 0.42 0.81 0.90

ε “ 0.0 0.98 0.97 0.96 0.97 0.96 0.97 0.97 0.98 0.95 0.96 0.97 0.97
n “ 5000 ε “ 0.1 0.14 0.28 0.84 0.90 0.06 0.12 0.69 0.82 0.13 0.29 0.84 0.90

ε “ 0.2 0.02 0.05 0.55 0.83 0.00 0.01 0.16 0.51 0.01 0.03 0.56 0.80

t “ 0.3 t “ 0.5 t “ 0.7
x “ 0.3 α 0 0.1 0.5 1 0 0.1 0.5 1 0 0.1 0.5 1

ε “ 0.0 0.97 0.98 0.93 0.93 0.96 0.96 0.95 0.93 0.94 0.95 0.95 0.94
n “ 1000 ε “ 0.1 0.70 0.80 0.93 0.96 0.71 0.80 0.93 0.94 0.70 0.82 0.95 0.95

ε “ 0.2 0.29 0.45 0.86 0.94 0.20 0.40 0.78 0.85 0.27 0.47 0.84 0.92

ε “ 0.0 0.96 0.95 0.94 0.94 0.94 0.94 0.93 0.94 0.96 0.95 0.94 0.94
n “ 5000 ε “ 0.1 0.14 0.33 0.87 0.93 0.15 0.35 0.81 0.86 0.17 0.41 0.85 0.92

ε “ 0.2 0.01 0.04 0.57 0.83 0.01 0.02 0.41 0.63 0.01 0.03 0.55 0.83

t “ 0.3 t “ 0.5 t “ 0.7
x “ 0.5 α 0 0.1 0.5 1 0 0.1 0.5 1 0 0.1 0.5 1

ε “ 0.0 0.97 0.99 0.98 0.97 0.97 0.97 0.97 0.95 0.96 0.97 0.97 0.98
n “ 1000 ε “ 0.1 0.77 0.85 0.91 0.95 0.76 0.84 0.91 0.94 0.79 0.83 0.95 0.94

ε “ 0.2 0.51 0.69 0.93 0.95 0.53 0.66 0.89 0.92 0.47 0.65 0.92 0.96

ε “ 0.0 0.93 0.95 0.95 0.96 0.90 0.92 0.91 0.94 0.94 0.96 0.94 0.94
n “ 5000 ε “ 0.1 0.30 0.53 0.91 0.95 0.39 0.56 0.90 0.91 0.31 0.54 0.93 0.94

ε “ 0.2 0.04 0.10 0.70 0.87 0.06 0.11 0.66 0.80 0.05 0.08 0.69 0.86

Table 2
Second type of contamination - coverage probabilities of 90% confidence intervals.

t “ 0.3 t “ 0.5 t “ 0.7
x “ 0.5 α 0 0.1 0.5 1 0 0.1 0.5 1 0 0.1 0.5 1

ε “ 0.0 0.96 0.96 0.97 0.96 0.94 0.93 0.96 0.96 0.96 0.97 0.96 0.96
n “ 1000 ε “ 0.1 0.97 0.96 0.96 0.95 0.91 0.93 0.94 0.93 0.96 0.97 0.98 0.96

ε “ 0.2 0.99 0.99 0.96 0.96 0.80 0.88 0.92 0.94 0.99 0.99 0.96 0.95

ε “ 0.0 0.93 0.94 0.95 0.96 0.93 0.93 0.95 0.97 0.95 0.96 0.95 0.96
n “ 5000 ε “ 0.1 0.93 0.98 0.96 0.96 0.48 0.69 0.94 0.96 0.95 0.99 0.99 0.98

ε “ 0.2 0.92 0.98 0.96 0.95 0.20 0.33 0.88 0.96 0.87 0.97 0.96 0.94

t “ 0.3 t “ 0.5 t “ 0.7
x “ 0.7 α 0 0.1 0.5 1 0 0.1 0.5 1 0 0.1 0.5 1

ε “ 0.0 0.97 0.97 1.00 1.00 0.94 0.94 0.96 0.99 0.94 0.96 1.00 1.00
n “ 1000 ε “ 0.1 0.98 0.98 1.00 1.00 0.76 0.84 0.96 0.98 0.96 0.95 1.00 1.00

ε “ 0.2 0.98 0.98 1.00 1.00 0.55 0.70 0.94 0.99 0.98 0.98 1.00 1.00

ε “ 0.0 0.92 0.93 0.94 0.94 0.92 0.94 0.95 0.95 0.94 0.95 0.95 0.96
n “ 5000 ε “ 0.1 0.81 0.89 0.95 0.96 0.24 0.54 0.94 0.95 0.79 0.88 0.95 0.95

ε “ 0.2 0.57 0.67 0.90 0.94 0.06 0.11 0.77 0.90 0.60 0.69 0.91 0.93

t “ 0.3 t “ 0.5 t “ 0.7
x “ 0.9 α 0 0.1 0.5 1 0 0.1 0.5 1 0 0.1 0.5 1

ε “ 0.0 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.98 0.98 0.99 0.99
n “ 1000 ε “ 0.1 0.91 0.95 0.99 0.99 0.64 0.81 0.97 0.99 0.91 0.93 0.99 0.99

ε “ 0.2 0.89 0.92 0.98 1.00 0.40 0.63 0.96 0.98 0.89 0.93 0.99 1.00

ε “ 0.0 0.98 0.98 0.99 0.98 0.98 0.97 0.98 0.98 0.97 0.97 0.98 0.98
n “ 5000 ε “ 0.1 0.61 0.77 0.97 0.98 0.15 0.39 0.95 0.97 0.60 0.82 0.98 0.99

ε “ 0.2 0.26 0.44 0.92 0.95 0.01 0.09 0.74 0.91 0.24 0.42 0.91 0.96
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Fig 2. Air pollution data: time plot of the estimate for the conditional extremal coefficient (left) and estimate for
the conditional Pickands dependence function in April 2002 (right), α “ 0 (black), α “ 0.1 (blue), α “ 0.5 (green)
and α “ 1 (red).

report here only the results for the city of Houston. Similar results can though be obtained for
other cities or regions in the U.S. In the left panel of Figure 2, we show the time plot of the
estimates for the conditional extremal coefficient over the observation period. The conditional
extremal coefficient is defined as ηpxq “ 2A0p0.5|xq, and is often used as a summary measure of
extremal dependence. Its range is r1, 2s, where 1 corresponds with perfect dependence and 2 with
independence. The time plot shows a seasonal pattern in the extremal dependence, and moreover
the extremal dependence seems to decrease with time. We also observe that the estimates for
α “ 0 and 0.1 are similar, but different from those obtained with α “ 0.5 and 1 (which are
also similar), indicating that the dataset contains contamination with respect to the dependence
structure. In order to get a better idea about the extremal dependence we show in the right
panel of Figure 2 the estimate of A0pt|xq for a particular month (April 2002). This plot shows
again estimates which are similar for α “ 0 and 0.1, but different from those obtained with
α “ 0.5 and 1 (which are similar), confirming our earlier observation that there are observations
which are contaminating with respect to the dependence structure.

APPENDIX A: PROOFS OF THE RESULTS

A.1. Proof of Lemma 2.1. Using the fact that for any x P Rp the conditional distribution
function of Zt given X “ x is an exponential distribution with parameter A0pt|xq and since
λa`A0pt|xq ą 0, we have

E
”

Zβt e
´λaZt

ˇ

ˇ

ˇ
X “ x

ı

“ Γpβ ` 1q
A0pt|xq

pλa`A0pt|xqqβ`1
.(A.1)
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Then

E
”

Khpx0 ´XqZ
β
t e
´λaZt

ı

“ E
„

Khpx0 ´XqΓpβ ` 1q
A0pt|Xq

pλa`A0pt|Xqqβ`1



“ Γpβ ` 1q

ż

Rp
Khpx0 ´ yq

A0pt|yq

pλa`A0pt|yqqβ`1
fpyqdy

“ Γpβ ` 1q

ż

SK

Kpzq
A0pt|x0 ´ zhq

pλa`A0pt|x0 ´ zhqqβ`1
fpx0 ´ hzqdz

“ Γpβ ` 1q
A0pt|x0q

pλa`A0pt|x0qq
β`1

fpx0qp1` op1qq.(A.2)

The last transition in the above display follows since z P SK and for n large enough, using the
continuity of A0pt|.q and f at x0 P IntpSXq non-empty, we have boundedness in a neighborhood
of x0, allowing us to use Lebesgue’s dominated convergence theorem. Consequently

ErTnpK, a, t, λ, β, γ|x0qs “ aγΓpβ ` 1q
A0pt|x0q

pλa`A0pt|x0qq
β`1

fpx0qp1` op1qq.

Also, similar arguments yield

VarpTnpK, a, t, λ, β, γ|x0qq “
1

nhp
}K}22A0pt|x0q a

2γ Γp2β ` 1q fpx0q

p2λa`A0pt|x0qq
2β`1

p1` op1qq “ op1q,

from which the convergence in probability simply follows.

A.2. Asymptotic covariance matrix of the finite dimensional vector Tn. Our aim
in this section is to compute the explicit expression of the elements of the covariance matrix
Σ “ pσj,kq1ďj,kďm given in (2.6). In this section we work under the assumptions of Lemma 2.1.
According to (A.2), we have

E
”

Khpx0 ´XqZ
βj
tj
e´λjA0ptj |x0qZtj

ı

“
fpx0qΓpβj ` 1q

rλj ` 1sβj`1rA0ptj |x0qs
βj
p1` op1qq,

for 1 ď j ď m. In order to compute the cross expectation, we need to derive the conditional
distribution function of the pair pZtj , Ztkq given X “ x. Let u, v ą 0

P
`

Ztj ą u, Ztk ą v|X “ x
˘

“ P
´

Y p1q ą max pp1´ tjqu, p1´ tkqvq , Y
p2q ą max ptju, tkvq

ˇ

ˇ

ˇ
X “ x

¯

“ G
´

max pp1´ tjqu, p1´ tkqvq ,max ptju, tkvq
ˇ

ˇ

ˇ
x
¯

.

Hence, for j, k P t1, ...,mu2, we have

E
”

Khpx0 ´XqZ
βj
tj e

´λjA0ptj |x0qZtjKhpx0 ´XqZ
βk
tk
e´λkA0ptk|x0qZtk

ı

(A.3)

“ E
”

K2
hpx0 ´XqE

”

Z
βj
tj e

´λjA0ptj |x0qZtjZβktk e
´λkA0ptk|x0qZtk

ˇ

ˇ

ˇ
X
ıı

.

We focus now on the conditional expectation. Using (A.1) and the fact that

zβe´aλz ´ δ0pβq “

ż

R`
1ltząuuu

β´1pβ ´ aλuqe´aλudu,(A.4)
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we have

E
”

Z
βj
tj
e´λjA0ptj |x0qZtjZβktk e

´λkA0ptk|x0qZtk

ˇ

ˇ

ˇ
X
ı

“ E
”´

Z
βj
tj
e´λjA0ptj |x0qZtj ´ δ0pβjq

¯´

Zβktk e
´λkA0ptk|x0qZtk ´ δ0pβkq

¯
ˇ

ˇ

ˇ
X
ı

´ δ0pβjqδ0pβkq

`δ0pβjqE
”

Zβktk e
´λkA0ptk|x0qZtk

ˇ

ˇ

ˇ
X
ı

` δ0pβkqE
”

Z
βj
tj
e´λjA0ptj |x0qZtj

ˇ

ˇ

ˇ
X
ı

“

ż

R2
`

gj,kpu, vqGtj ,tkpu, v|Xqdudv ´ δ0pβjqδ0pβkq

` δ0pβjq
Γpβk ` 1q

rλk ` 1sβk`1rA0ptk|Xqsβk
` δ0pβkq

Γpβj ` 1q

rλj ` 1sβj`1rA0ptj |Xqsβj
.(A.5)

Combining the continuity at x0 and boundedness of the functions f , A0pt|.q and Gpu, v|.q, the
expression of σj,k in (2.6) follows.

A.3. Proof of Theorem 2.1. First, remark that to show Theorem 2.1, it is sufficient to
look at the weak convergence of the process

!?
nhp pTnpK,A0pt|x0q, t, λ, β, γ|x0q ´ E rTnpK,A0pt|x0q, t, λ, β, γ|x0qsq , t P r0, 1s

)

,(A.6)

since

lim
nÑ8

sup
tPr0,1s

?
nhp

ˇ

ˇ

ˇ

ˇ

E rTnpK,A0pt|x0q, t, λ, β, γ|x0qs ´ Γpβ ` 1q
rA0pt|x0qs

γ´β

pλ` 1qβ`1
fpx0q

ˇ

ˇ

ˇ

ˇ

“ 0.

Indeed, according to (A.2), we have
ˇ

ˇ

ˇ

ˇ

E rTnpK,A0pt|x0q, t, λ, β, γ|x0qs ´ Γpβ ` 1q
rA0pt|x0qs

γ´β

pλ` 1qβ`1
fpx0q

ˇ

ˇ

ˇ

ˇ

ď Γpβ ` 1qAγ0pt|x0q

ż

SK

Kpyq

ˇ

ˇ

ˇ

ˇ

ˇ

A0pt|x0 ´ yhq

pλA0pt|x0q `A0pt|x0 ´ yhqqβ`1
fpx0 ´ hyq ´

A´β0 pt|x0q

pλ` 1qβ`1
fpx0q

ˇ

ˇ

ˇ

ˇ

ˇ

dy.

Now, using Assumptions pDq and pA0q, we deduce that
ˇ

ˇ

ˇ

ˇ

ˇ

A0pt|x0 ´ yhq

pλA0pt|x0q `A0pt|x0 ´ yhqqβ`1
fpx0 ´ hyq ´

A´β0 pt|x0q

pλ` 1qβ`1
fpx0q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
A0pt|x0 ´ yhq

pλA0pt|x0q `A0pt|x0 ´ yhqqβ`1
|fpx0 ´ yhq ´ fpx0q| `

ˇ

ˇ

ˇ

ˇ

ˇ

A0pt|x0 ´ yhq

pλA0pt|x0q `A0pt|x0 ´ yhqqβ`1
´
A´β0 pt|x0q

pλ` 1qβ`1

ˇ

ˇ

ˇ

ˇ

ˇ

fpx0q

“ Ophminpηf ,ηA0
qq

for n large enough such that h ď 1, with a bound which is uniform in t.

Then, to show the weak convergence of the stochastic process (A.6), we will use Theorem
19.28 in van der Vaart (1998). To apply this result, we need to introduce some notations. Define
the covering number NpF , L2pQq, τq as the minimal number of L2pQq-balls of radius τ needed
to cover the class of functions F and the uniform entropy integral as

Jpδ,F , L2q :“

ż δ

0

c

log sup
Q
NpF , L2pQq, τ}F }Q,2q dτ,
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where Q is the set of all probability measures Q for which 0 ă }F }2Q,2 :“
ş

F 2dQ ă 8 and F is
an envelope function of the class F .

Let P denote the law of the vector pY p1q, Y p2q, Xq and define the expectation under P , the
empirical version and empirical process as follows

Pf :“

ż

fdP, Pnf :“
1

n

n
ÿ

i“1

f
´

Y
p1q
i , Y

p2q
i , Xi

¯

, Gnf :“
?
npPn ´ P qf,

for any real-valued measurable function f .
For any γ P R and pλ, βq P p0,8qˆR` or pλ, βq “ p0, 0q, we introduce our sequence of classes

Fn as

Fn :“ tpy1, y2, zq Ñ fn,tpy1, y2, zq, t P r0, 1su

:“
!

py1, y2, zq Ñ
?
hpKhpx0 ´ zqrA0pt|x0qs

γ´βrA0pt|x0qZtpy1, y2qs
βe´λA0pt|x0qZtpy1,y2q, t P r0, 1s

)

,

where Ztpy1, y2q :“ min

ˆ

y1

1´ t
,
y2

t

˙

. Remark that Zt “ Zt

´

rY p1q, rY p2q
¯

. Denote now by Fn an

envelope function of the class Fn and for any y P SX , define the bivariate function ρy : r0, 1s2 Ñ
R` as

ρypt, sq :“ E
„

´

Aγ0pt|x0qZ
β
t e
´λA0pt|x0qZt ´Aγ0ps|x0qZ

β
s e
´λA0ps|x0qZs

¯2
ˇ

ˇ

ˇ

ˇ

X “ y



.

Naturally, ρy defines a semimetric on r0, 1s2 and since it is bi-continuous, it makes r0, 1s totally
bounded.

Now, according to Theorem 19.28 in van der Vaart (1998), the weak convergence of the
stochastic process (A.6) follows from the four following conditions

sup
ρx0 pt,sqďδn

P pfn,t ´ fn,sq
2 ÝÑ 0 for every δn Œ 0,(A.7)

PF 2
n “ Op1q,(A.8)

PF 2
ntFn ą ε

?
nu ÝÑ 0 for every ε ą 0,(A.9)

Jpδn,Fn, L2q ÝÑ 0 for every δn Œ 0.(A.10)

We start to prove (A.7). By definition, we have

P pfn,t ´ fn,sq
2 “

ż

Rp
h´pK2

ˆ

x0 ´ u

h

˙

ρupt, sqfpuqdu

“

ż

SK

K2puqρx0´hupt, sqfpx0 ´ huqdu

“ }K}22fpx0qρx0pt, sq `

ż

SK

K2puqfpx0 ´ huqrρx0´hupt, sq ´ ρx0pt, sqsdu

`ρx0pt, sq

ż

SK

K2puqrfpx0 ´ huq ´ fpx0qsdu.
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By the Assumptions pDq, pK1q and since ρx0 is bounded, it remains to show that

sup
ρx0 pt,sqďδn

|ρx0´hupt, sq ´ ρx0pt, sq| Ñ 0.(A.11)

Recall that

ρypt, sq “ rA0pt|x0qs
2γ E

”

Z2β
t e´2λA0pt|x0qZt

ˇ

ˇ

ˇ
X “ y

ı

` rA0ps|x0qs
2γ E

”

Z2β
s e´2λA0ps|x0qZs

ˇ

ˇ

ˇ
X “ y

ı

´2 rA0pt|x0qA0ps|x0qs
γ E

”

Zβt e
´λA0pt|x0qZtZβs e

´λA0ps|x0qZs
ˇ

ˇ

ˇ
X “ y

ı

.

Such expectations have been computed in (A.1) and (A.5). Using the mean value theorem
combined with the boundedness of A0p.|.q and Assumption pA0q, we can easily infer that for all
py, y1q P Bx0prq ˆBx0prq, we have

sup
pt,sqPr0,1s2

ˇ

ˇρypt, sq ´ ρy1pt, sq
ˇ

ˇ ď C}y ´ y1}ηA0 ,

for some positive constant C. This implies (A.11) and thus (A.7) is established.

Now, we move to the proof of (A.8) and (A.9). Since the function x Ñ xβe´λx is bounded
over R` by pβ{λqβ e´β and A0pt|x0q P r1{2, 1s, Fn admits the natural envelope function

py1, y2, zq Ñ Fnpy1, y2, zq :“
?
hpKhpx0 ´ zqM,(A.12)

where M :“

ˆ

β

λ

˙β

e´β maxp1, 2β´γq. Consequently

PF 2
n “M2

ż

Rp
h´pK2

ˆ

x0 ´ u

h

˙

fpuqdu “M2

ż

SK

K2puqfpx0 ´ huqdu “M2}K}22fpx0qp1` op1qq,

PF 2
ntFn ą ε

?
nu “M2

ż

tKpuqąM´1ε
?
nhpu

K2puqfpx0 ´ huqdu “ 0,

for all ε ą 0 and n sufficiently large, since nhp Ñ 8, K satisfies Assumption pK1q and f is
continuous.

Finally, it remains to prove (A.10). First, we introduce the class of functionsW :“ tpy1, y2q Ñ

A0pt|x0qZtpy1, y2q, t P r0, 1su and its subgraph σt in R2
` ˆ R as

σt :“ tpu, v, wq : A0pt|x0qZtpu, vq ą wu

“

"

pu, v, wq :
A0pt|x0q

1´ t
u ą w

*

X

"

pu, v, wq :
A0pt|x0q

t
v ą w

*

.

We can show that tσt : t P r0, 1su is a VC -class of sets. Indeed, if we look more generally, at the
collection of sets C :“ ttpx, yq : δx ą yu, δ ą 0u in R` ˆ R and if we define two points px1, y1q

and px2, y2q such that, without loss of generality,
y1

x1
ď

y2

x2
. Then, for any δ ą 0, δx2 ě y2

implies that δx1 ě y1. Thus, C cannot shatter the set tpx1, y1q, px2, y2qu and by consequence it is
a VC -class of sets. Now, the collection of one set R` is naturally a VC -class of sets. According
to Lemma 2.6.17 (vii) in van der Vaart and Wellner (1996), C ˆR` is aVC -class of sets as well.
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Invoking Lemma 2.6.17 (ii), tσt : t P r0, 1su belongs to a VC -class and as such is VC. Define now
for all z P R`

φλ,βpzq :“ zβe´λz.

We can easily check that φλ,β is of bounded variation. This implies that φλ,β can be decomposed

as the sum of two monotone functions, say φ
p1q
λ,β and φ

p2q
λ,β. Thus, according to Lemma 2.6.18

(viii) in van der Vaart and Wellner (1996), φ
p1q
λ,β ˝W and φ

p2q
λ,β ˝W are VC. Now, according to

Theorem 2.6.7 in van der Vaart and Wellner (1996), there exists a universal constant C such
that for any j “ 1, 2 and 0 ă τ ă 1

sup
Q
Npφ

pjq
λ,β ˝W, L2pQq, τ}Wj}Q,2q ď CVjp16eqVj

ˆ

1

τ

˙2pVj´1q

,

where Vj is the VC -index of φ
pjq
λ,β ˝W and Wj its envelope function. Now, consider the sequence

of class of functions

Fn,j :“ tz Ñ
?
hpKhpx0 ´ zqu b φ

pjq
λ,β ˝W,

for j “ 1, 2, where b denotes the direct product between the two classes involved. Since we only
update the previous sets with one single function and only one ball is needed to cover the class
tz Ñ

?
hpKhpx0 ´ zqu whatever the measure Q, we have

sup
Q
NpFn,j , L2pQq, τ}κFn}Q,2q ď CVjp16eqVj

ˆ

1

τ

˙2pVj´1q

,

where κ is a suitable constant. Moreover since suptPr0,1srA0pt|x0qs
γ´β “ maxp1, 2β´γq, for any

0 ă τ ă 1, the minimal number of balls of radius τ maxp1, 2β´γq needed to cover the interval
“

0,maxp1, 2β´γq
‰

is r1{2τ s. Hence

sup
Q
N

´

trA0pt|x0qs
γ´β, t P r0, 1su, L2pQq, τ maxp1, 2β´γq

¯

“

R

1

2τ

V

ď
3

2

ˆ

1

τ

˙2

.

Consequently, we have

sup
Q
NptrA0pt|x0qs

γ´β , t P r0, 1su b Fn,j , L2pQq, τ maxp1, 2β´γq}κFn}Q,2q ď
3C

2
Vjp16eqVj

ˆ

1

τ

˙2Vj

.

Finally, since our class of interest Fn is included in the class of functions

rFn :“ trA0pt|x0qs
γ´β, t P r0, 1su b Fn,1 ` trA0pt|x0qs

γ´β, t P r0, 1su b Fn,2,

with envelope function 2 maxp1, 2β´γqκFn, using Lemma 16 in Nolan and Pollard (1987), we
have

sup
Q
NpFn, L2pQq, 2τ maxp1, 2β´γq}κFn}Q,2q ď sup

Q
Np rFn, L2pQq, 2τ maxp1, 2β´γq}κFn}Q,2q

ď
9C2

4
V1V2p16eqV1`V2

ˆ

4

τ

˙2pV1`V2q

“: L

ˆ

1

τ

˙V

.
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Thus, (A.10) is established since for any sequence δn Œ 0 and n large enough, we have

Jpδn,Fn, L2q ď

ż δn

0

b

logpr2κmaxp1, 2β´γqsV Lq ´ V logpτqdτ “ op1q.

This achieves the proof of Theorem 2.1 since the covariance structure follows from (2.6).

A.4. Proof of Theorem 2.2. To prove this theorem, we will make use of the Cramér-Wold
device (see, e.g., Severini, 2005, p. 337), according to which it is sufficient to show that

Λn :“ ξT
?
nhp pTn ´ ErTnsq N1

`

0, ξTΣξ
˘

,

for all ξ P Rm. A straightforward rearrangement of the terms leads to

Λn “
1

n

n
ÿ

i“1

?
nhp

#

m
ÿ

j“1

ξjrA0ptj |x0qs
γjKhpx0 ´XiqZ

βj
tj ,i
e´λjA0ptj |x0qZtj ,i

´E

«

m
ÿ

j“1

ξjrA0ptj |x0qs
γjKhpx0 ´XiqZ

βj
tj ,i
e´λjA0ptj |x0qZtj ,i

ff+

“:
1

n

n
ÿ

i“1

Wi.

Since W1, ...,Wn are independent and identically distributed random variables, VarpΛnq “
VarpW1q

n
with

VarpW1q “ nhp
m
ÿ

j“1

m
ÿ

k“1

ξjξkCj,k,

where

Cj,k :“ E
”

pA0ptj |x0qq
γj pA0ptk|x0qq

γkK2
hpx0 ´XqZ

βj
tj
e´λjA0ptj |x0qZtjZβktk e

´λkA0ptk|x0qZtk

ı

´E
”

pA0ptj |x0qq
γjKhpx0 ´XqZ

βj
tj
e´λjA0ptj |x0qZtj

ı

E
”

pA0ptk|x0qq
γkKhpx0 ´XqZ

βk
tk
e´λkA0ptk|x0qZtk

ı

.

According to the computations in Appendix A.2, V arpΛnq “ ξTΣξp1`op1qq. Hence, to ensure the
convergence in distribution of Λn to a normal random variable, we have to verify the Lyapounov
condition for triangular arrays of random variables (Billingsley, 1995, p. 362). In the present

context this simplifies to verifying
1

n2
Ep|W1|

3q Ñ 0. We have

Ep|W1|
3q ď n3{2h3p{2

$

&

%

E

»

–

˜

m
ÿ

j“1

|ξj |pA0ptj |x0qq
γjKhpx0 ´XqZ

βj
tj
e´λjA0ptj |x0qZtj

¸3
fi

fl

`3E

»

–

˜

m
ÿ

j“1

|ξj |pA0ptj |x0qq
γjKhpx0 ´XqZ

βj
tj
e´λjA0ptj |x0qZtj

¸2
fi

fl

ˆE

«

m
ÿ

j“1

|ξj |pA0ptj |x0qq
γjKhpx0 ´XqZ

βj
tj
e´λjA0ptj |x0qZtj

ff

` 4

«

E

˜

m
ÿ

j“1

|ξj |pA0ptj |x0qq
γjKhpx0 ´XqZ

βj
tj
e´λjA0ptj |x0qZtj

¸ff3
,

.

-

.
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A similar treatment as for (A.3) yields for all postive integer q

E

«˜

m
ÿ

j“1

|ξj |pA0ptj |x0qq
γjKhpx0 ´XqZ

βj
tj
e´λjA0ptj |x0qZtj

¸qff

“ E

˜

E

«˜

m
ÿ

j“1

|ξj |pA0ptj |x0qq
γjKhpx0 ´XqZ

βj
tj
e´λjA0ptj |x0qZtj

¸qˇ
ˇ

ˇ

ˇ

ˇ

X

ff¸

“: E
“

Kq
hpx0 ´XqQpXq

‰

where the explicit expression of QpXq can be obtained similarly as for (A.5). Hence

E

«˜

m
ÿ

j“1

|ξj |pA0ptj |x0qq
γjKhpx0 ´XqZ

βj
tj
e´λjA0ptj |x0qZtj

¸qff

“
1

hqp

ż

Rp
Kq

ˆ

x0 ´ u

h

˙

Qpuqfpuqdu

“ phpq1´q
ż

SK

KqpzqQpx0 ´ zhqfpx0 ´ zhqdz

“ Opphpq1´qq

by continuity and boundedness of the functions. Consequently

1

n2
Ep|W1|

3q “ O
´

p
?
nhpq´1

¯

“ op1q.

A.5. The derivatives of p∆α,x0,t and their asymptotic properties. Straightforward
computations for a P r1{2, 1s, α ą 0, give

p∆
p1q
α,x0,tpaq “ αa´1

p∆α,x0,tpaq ` a
αp1` αq

1

n

n
ÿ

i“1

Khpx0 ´XiqZt,ie
´αaZt,i ,

p∆
p2q
α,x0,tpaq “ αa´1

p∆
p1q
α,x0,tpaq ´ αa

´2
p∆α,x0,tpaq ` αpα` 1qaα´1 1

n

n
ÿ

i“1

Khpx0 ´Xiqp1´ aZt,iqZt,ie
´αaZt,i ,

p∆
p3q
α,x0,tpaq “ α

´

2a´3
p∆α,x0,tpaq ` a

´1
p∆
p2q
α,x0,tpaq ´ 2a´2

p∆
p1q
α,x0,tpaq

¯

`pα´ 1qαpα` 1q
aα´2

n

n
ÿ

i“1

Khpx0 ´Xiqp1´ aZt,iqZt,ie
´αaZt,i

´αpα` 1q
aα´1

n

n
ÿ

i“1

Khpx0 ´Xiqpαp1´ aZt,iq ` 1qZ2
t,ie

´αaZt,i .

The convergence in probability of the two first derivatives of p∆α,x0,t is therefore a direct appli-
cation of Lemma 2.1, which yields as nÑ8

p∆
p1q
α,x0,t

pA0pt|x0qq
P
ÝÑ `

p1q
α,x0,t

pA0pt|x0qq :“ 0,

p∆
p2q
α,x0,t

pA0pt|x0qq
P
ÝÑ `

p2q
α,x0,t

pA0pt|x0qq :“
1` α2

p1` αq2
rA0pt|x0qs

α´2fpx0q.

Now the rate of convergence of p∆
pjq
α,x0,t

pA0pt|x0qq, j P t1, 2u, to its limit is also useful to study
(2.4) and thus to reach our final goal. The aim of the next corollary is to provide such a rate.
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Corollary A.1. Under the assumptions of Theorem 2.1, then for any j P t1, 2u, the process
!?

nhp
´

p∆
pjq
α,x0,t

pA0pt|x0qq ´ `
pjq
α,x0,t

pA0pt|x0qq

¯

, t P r0, 1s
)

weakly converges in Cpr0, 1sq towards a tight centered Gaussian process. In particular, we have

sup
tPr0,1s

ˇ

ˇ

ˇ

p∆
pjq
α,x0,t

pA0pt|x0qq ´ `
pjq
α,x0,t

pA0pt|x0qq

ˇ

ˇ

ˇ
“ oPp1q.

Proof of Corollary A.1. As usual, it is sufficient to show the finite dimensional convergence
and the tightness of the process. Using Theorem 2.2 we directly solve the finite dimensional
convergence issue. Next, Theorem 2.1 combined with (A.6) implies tightness for any process
tÑ

?
nhppTn ´ ErTnsqpK,A0pt|x0q, t, λ, β, γ|x0q and similarly as in Lemma 1 in Bai and Taqqu

(2013), we have tightness for any multivariate process with similar coordinates. Corollary A.1
then follows.

A.6. Proof of Theorem 2.3. To prove the theorem we will adjust the arguments used
to prove existence and consistency of solutions of the likelihood estimating equation, see e.g.
Theorem 3.7 and Theorem 5.1 in Chapter 6 of Lehmann and Casella (1998), to the MDPD
framework. Let ζ, b ą 0, Cp.|.q : r0, 1s ˆSX Ñ r1{2´ ζ, 1` ζs and @t P r0, 1s, rptq :“ |A0pt|x0q ´

Cpt|x0q|. Define in addition the b-level of r as

Tb :“ tt P r0, 1s, rptq ą bu .

We firstly show that for any b ą 0

P
´

@t P Tb, p∆α,x0,tpA0pt|x0qq ă p∆α,x0,t pCpt|x0qq

¯

Ñ 1,(A.13)

as n Ñ 8, for any function Cp.|x0q different from but close enough to A0p.|x0q. By applying a
Taylor series expansion, we have

p∆α,x0,tpCpt|x0qq ´ p∆α,x0,tpA0pt|x0qq “ pCpt|x0q ´A0pt|x0qqp∆
p1q
α,x0,t

pA0pt|x0qq `
1

2
pCpt|x0q ´A0pt|x0qq

2
p∆
p2q
α,x0,t

pA0pt|x0qq

`
1

6
pCpt|x0q ´A0pt|x0qq

3
p∆
p3q
α,x0,t

p rCpt|x0qq,

where rCpt|x0q is an intermediate value between Cpt|x0q and A0pt|x0q. According to Appendix
A.5, as nÑ8

sup
tPr0,1s

ˇ

ˇ

ˇ

p∆
p1q
α,x0,t

pA0pt|x0qq

ˇ

ˇ

ˇ
“ sup

tPr0,1s

ˇ

ˇ

ˇ

p∆
p1q
α,x0,t

pA0pt|x0qq ´ `
p1q
α,x0,t

pA0pt|x0qq

ˇ

ˇ

ˇ

P
ÝÑ0.

This convergence implies, that for all 0 ă ε ď b2

P
´

@t P Tb, rptq|p∆
p1q
α,x0,t

pA0pt|x0qq| ď r3ptq
¯

ě P

˜

@t P Tb, |p∆
p1q
α,x0,t

pA0pt|x0qq| ď r2ptq, sup
tPr0,1s

ˇ

ˇ

ˇ

p∆
p1q
α,x0,t

pA0pt|x0q
ˇ

ˇ

ˇ
ď ε

¸

“ P

˜

sup
tPr0,1s

ˇ

ˇ

ˇ

p∆
p1q
α,x0,t

pA0pt|x0q
ˇ

ˇ

ˇ
ď ε

¸

ÝÑ1,

as nÑ8. Now, concerning p∆
p2q
α,x0,t

pA0pt|x0qq, we have

sup
tPr0,1s

ˇ

ˇ

ˇ

p∆
p2q
α,x0,t

pA0pt|x0qq ´ `
p2q
α,x0,t

pA0pt|x0qq

ˇ

ˇ

ˇ

P
ÝÑ0,
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as nÑ8. Consequently, there exists δ1 ą 0 such that

@t P r0, 1s,
r2ptq

2
p∆
p2q
α,x0,t

pA0pt|x0qq ą δ1r
2ptq,

with probability tending to 1.
Finally, since xÑ xλe´x is bounded @λ ě 1 on R` and by Lemma 2.1

TnpK, a, t, 0, 0, 0|x0q “
1

n

n
ÿ

i“1

Khpx0 ´Xiq
P
ÝÑfpx0q,

as n Ñ 8, we have for any ε ą 0, n´1
řn
i“1Khpx0 ´Xiq ď fpx0q ` ε with probability tending

to 1. This implies that

sup
aPr1{2´ζ,1`ζs,tPr0,1s

ˇ

ˇ

ˇ

p∆
p3q
α,x0,t

paq
ˇ

ˇ

ˇ
“: M ă 8(A.14)

with probability tending to 1. We can therefore conclude that

@t P r0, 1s,
r3ptq

6

ˇ

ˇ

ˇ

p∆
p3q
α,x0,t

p rCpt|x0qq

ˇ

ˇ

ˇ
ď
M

6
r3ptq,

with probability tending to 1.
Overall, we have shown that

P
ˆ

@t P Tb, p∆α,x0,tpCpt|x0qq ´ p∆α,x0,tpA0pt|x0qq ą δ1r
2ptq ´

ˆ

1`
M

6

˙

r3ptq

˙

ÝÑ1,

as n Ñ 8, where the right-hand side of the inequality is positive for rptq ă δ1{p1 `M{6q.
Thus, setting

sup
tPr0,1s

rptq ă δ1{p1`M{6q,

(A.13) follows.

To complete the proof we adjust the line of argumentation of Theorem 3.7 in Chapter 6 of
Lehmann and Casella (1998). Take 0 ă δ ă ζ and define the event

Snpδq :“
!

@t P r0, 1s, p∆α,x0,tpA0pt|x0qq ă p∆α,x0,tpA0pt|x0q ˘ δq
)

.

For υ P Snpδq, since p∆α,x0,tpaq is differentiable with respect to a, there exists rAα,n,δpt|x0q P

pA0pt|x0q ´ δ, A0pt|x0q ` δq where p∆α,x0,tpaq achieves a local minimum, so p∆
p1q
α,x0,t

p rAα,n,δpt|x0qq “

0.

By (A.13), PpSnpδqq Ñ 1 for any small enough δ, and hence there exists a sequence δn Ó 0,
such that PpSnpδnqq Ñ 1, as n Ñ 8. Now, let pAα,npt|x0q :“ rAα,n,δnpt|x0q if υ P Snpδnq and

arbitrary otherwise. Since υ P Snpδnq implies p∆
p1q
α,x0,t

p pAα,npt|x0qq “ 0, we have that

P
´

p∆
p1q
α,x0,t

p pAα,npt|x0qq “ 0
¯

ě P pSnpδnqq Ñ 1,
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as n Ñ 8, which establishes the existence part. Note that the measurability of the local min-
imum can be verified in the same way as it is done in the framework of maximum likelihood
estimation (see e.g. Serfling, 1980, p. 147).

Concerning now the uniform consistency of the solution sequence, note that for any ε ą 0
and n large enough such that δn ď ε, we have

P

˜

sup
tPr0,1s

ˇ

ˇ

ˇ

pAα,npt|x0q ´A0pt|x0q
ˇ

ˇ

ˇ
ď ε

¸

ě P

˜

sup
tPr0,1s

ˇ

ˇ

ˇ

pAα,npt|x0q ´A0pt|x0q
ˇ

ˇ

ˇ
ď δn

¸

ě P pSnpδnqq Ñ 1,

as nÑ8, whence the uniform consistency of the estimator sequence.

A.7. Proof of Theorem 2.4. The starting point is (2.4). According to Corollary A.1,
!?

nhp p∆
p1q
α,x0,t

pA0pt|x0qq, t P r0, 1s
)

weakly converges, as nÑ8, towards a tight centered Gaus-

sian process and

!

p∆
p2q
α,x0,t

pA0pt|x0qq , t P r0, 1s
)

P
ÝÑ

!

`
p2q
α,x0,t

pA0pt|x0qq, t P r0, 1s
)

.

Combining these results with (A.14), we have, as nÑ8,

#

„

p∆
p2q
α,x0,t

pA0pt|x0qq `
1

2
p∆
p3q
α,x0,t

p rApt|x0qqp pAα,npt|x0q ´A0pt|x0qq

´1

, t P r0, 1s

+

P
ÝÑ

"

”

`
p2q
α,x0,t

pA0pt|x0qq

ı´1
, t P r0, 1s

*

.

Concerning the covariance structure, it follows from Theorem 2.2 and the fact that

p∆
p1q
α,x0,t

pA0pt|x0qq “ vTαT
p3q
n pt|x0q,

where

T p3qn pt|x0q :“

¨

˝

TnpK,A0pt|x0q, t, 0, 0, α´ 1|x0q

TnpK,A0pt|x0q, t, α, 0, α´ 1|x0q

TnpK,A0pt|x0q, t, α, 1, α|x0q

˛

‚.

A.8. Proof of Lemma 3.1. We use the following decomposition

Fn,jpy|xq ´ Fjpy|xq “
1

pfnpxq

#

1

n

n
ÿ

i“1

Kcpx´Xiq1ltY pjqi ďyu
´ E

”

Kcpx´Xq1ltY pjqďyu

ı

+

´
1

pfnpxq

#

1

n

n
ÿ

i“1

Kcpx´XiqE
”

1l
tY
pjq
i ďyu

ˇ

ˇ

ˇ
Xi

ı

´ E
”

Kcpx´Xq1ltY pjqďyu

ı

+

`
1

pfnpxq

#

1

n

n
ÿ

i“1

Kcpx´Xiq rFjpy|Xiq ´ Fjpy|xqs

+

“:
1

pfnpxq
tT1py|xq ´ T2py|xq ` T3py|xqu ,
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where

pfnpxq :“
1

n

n
ÿ

i“1

Kcpx´Xiq

denotes the kernel density estimator of f .

We start by showing that, for some q ą 1,

sup
py,xqPRˆSX

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

Kcpx´Xiq1ltY pjqi ďyu
´ E

“

Kcpx´Xq1ltY pjqďyu
‰

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP

˜

c

| log c|q

ncp

¸

,(A.15)

sup
xPSX

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

Kcpx´Xiq ´ E rKcpx´Xqs

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP

˜

c

| log c|q

ncp

¸

,(A.16)

sup
py,xqPRˆSX

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

Kcpx´XiqE
”

1l
tY
pjq
i ďyu

ˇ

ˇ

ˇ
Xi

ı

´ E
“

Kcpx´Xq1ltY pjqďyu
‰

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP

˜

c

| log c|q

ncp

¸

.(A.17)

To this aim, let us introduce the class

G :“

"

pu, vq Ñ K

ˆ

x´ v

d

˙

1ltuďyu; y P R, x P SX , d ą 0

*

“

"

K

ˆ

x´ .

d

˙

; x P SX , d ą 0

*

b

"

1lt.ďyu; y P R
*

“: G1 b G2.

Under Assumption pK2q, G1 is a uniformly bounded VC -class of measurable functions (see e.g.
Giné and Guillou, 2002). Next, since the collection of all cells tp´8, as, a P Ru is a VC -class
of sets, it follows that G2 is also a uniformly bounded VC -class of measurable functions. Now,
using the fact that the covering number of the direct product of two VC -classes is bounded by
the product of the respective covering numbers,

Gn :“

"

pu, vq Ñ K

ˆ

x´ v

c

˙

1ltuďyu; y P R, x P SX , c “ cn ą 0

*

,

admits the same bound for the covering number as G, that is

NpGn, L2pQq, τ}K}8q ď C VGp16eqVG
ˆ

1

τ

˙2pVG´1q

“:

ˆ

AG
τ

˙νG

,

where C is a universal constant, τ P p0, 1q and VG is the VC -index of G (see Theorem 2.6.7
in van der Vaart and Wellner, 1996). Now, according to Proposition 2.1 in Giné and Guillou
(2001) (see also Theorem 2.1 in Giné and Guillou, 2002) for σ2 ě supgPGn Varpgq, U ě }K}8
and 0 ă σ ď U , there exists a universal constant B such that

E

«

sup
py,xqPRˆSX

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

Kcpx´Xiq1ltY pjqi ďyu
´ E

”

Kcpx´Xq1ltY pjqďyu

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď rncps´1B

«

UνG log

ˆ

UAG
σ

˙

`

d

νGnσ2 log

ˆ

UAG
σ

˙

ff

.



LOCAL ROBUST ESTIMATION OF THE PICKANDS DEPENDENCE FUNCTION 27

Since

Var

ˆ

K

ˆ

x´X

c

˙

1ltY pjqďyu

˙

ď cp
ż

SK

K2puq fpx´ cuqdu ď cp}f}8}K}
2
2,

the choices σ2 “ σ2
n :“ cp}f}8}K}

2
2 and U “ }K}8 imply that σ2

n ď U2 for n large enough.
This yields (A.15). Similar arguments can be used in order to show (A.16). Also (A.17) can be
shown similarly, though with a refinement as used in Portier and Segers (2015), p. 23.

As for pfnpxq we use (A.16), and obtain pfnpxq “ Ep pfnpxqq ` oPp
a

| log c|q{pncpqq, where the
oP term is uniform in x P SX . By using the assumptions on K, f , and (3.5) we derive, for n
sufficiently large, the following uniform lower bound

E
´

pfnpxq
¯

“

ż

tzPSK :x´czPSXu
Kpzqfpx´ zcqdz

ě b

ż

tzPB0pδq:x´czPSXu
Kpzqdz

ě bmλ ptz P B0pδq : x´ cz P SXuq

ě bm δpε.

Whence tT1py|xq ´ T2py|xqu{ pfnpxq “ oPp
a

| log c|q{pncpqq, uniformly in py, xq P Rˆ SX .

Concerning T3py|xq we obtain for x P SX the following direct bound

|T3py|xq|

pfnpxq
ď

1

pfnpxq

$

&

%

1

n

ÿ

i:}x´Xi}ďc

Kcpx´Xiq |Fjpy|Xiq ´ Fjpy|xq|

,

.

-

ď MFjc
ηFj .

Combining the above results establishes the lemma.

A.9. Proof of Theorem 3.1. Let

In :“ tgθ,δ,n : θ P Θ, δ P Hu

where for θ :“ pt, aq P Θ :“ r0, 1s ˆ r1{2, 1s, and δ P H :“
 

δ “ pδ1, δ2q; δ : Rˆ Rˆ SX Ñ R2
(

,

gθ,δ,npy1, y2, uq :“
?
hpKhpx0 ´ uqqθ,δpy1, y2, uq

:“
?
hpKhpx0 ´ uqa

γrZθ,δpy1, y2, uqs
β exp p´λaZθ,δpy1, y2, uqq

with

Zθ,δpy1, y2, uq :“ min

ˆ

´ log p|δ1py1, y2, uq|q

1´ t
,
´ log p|δ2py1, y2, uq|q

t

˙

.

For convenience, denote δn :“ pFn,1, Fn,2q and δ0 :“ pF1, F2q. According to Lemma 3.1,
r´1
n |δn ´ δ0| converges in probability towards the null function H0 :“ t0u in H, endowed with

the norm }δ}H :“ }δ1}8` }δ2}8 for any δ P H. In order to apply Theorem 2.3 in van der Vaart
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and Wellner (2007), we have now to show
Assertion 1: supθPΘ

?
nPGnpθ, bnq ÝÑ 0 for every bn Ñ 0

and
Assertion 2: supθPΘ |GnGnpθ, bq|

P
ÝÑ 0, for every b ą 0,

where Gnpθ, bq is the minimal envelope function for the class

Enpθ, bq :“ tgθ,δ0`rnδ,n ´ gθ,δ0,n : δ P H, }δ}H ď bu ,

i.e.

Gnpθ, bq :“ sup
}δ}Hďb

|gθ,δ0`rnδ,n ´ gθ,δ0,n|

“
?
hpKhpx0 ´ ¨q sup

}δ}Hďb
|qθ,δ0`rnδ ´ qθ,δ0 |.(A.18)

Now, remark that @py1, y2, uq P Rˆ Rˆ SX

sup
}δ}Hďb

|qθ,δ0`rnδ ´ qθ,δ0 |py1, y2, uq “ sup
pδ1py1,y2,uq,δ2py1,y2,uqqPB

|qθ,δ0`rnδ ´ qθ,δ0 |py1, y2, uq,

where B :“ tpx, yq P R2 : |x|` |y| ď bu. Since B is compact and δ Ñ qθ,δpy1, y2, uq is continuous,
(A.18) reaches its supremum on at least one position δ˚θ,bpy1, y2, uq “ pδ

˚
1,θ,bpy1, y2, uq, δ

˚
2,θ,bpy1, y2, uqq

in B. Thus, according to Theorem 18.19 in Aliprantis and Border (2006), one can find a mea-
surable function δ˚θ,b bounded by b in H such that

Gnpθ, bq “ |gθ,δ0`rnδ˚θ,b,n
´ gθ,δ0,n|.

Proof of Assertion 1. For any positive sequence bn Ñ 0, we have

?
nPGnpθ, bnq “

?
nhp

ż

SK

KpuqE
”

|qθ,δ0`rnδ˚θ,bn
´ qθ,δ0 |

ˇ

ˇ

ˇ
X “ x0 ´ hu

ı

fpx0 ´ huqdu.

Note that for any pδ, δ1q P H ˆH, using (A.4)

|qθ,δ ´ qθ,δ1 | ď aγ
ż `8

0
|β ´ λas|sβ´1e´λas1ltsPrminpZθ,δ ,Zθ,δ1 q,maxpZθ,δ ,Zθ,δ1 qsu

ds.(A.19)

Consequently

E
”

|qθ,δ0`rnδ
˚
θ,bn

´ qθ,δ0
|

ˇ

ˇ

ˇ
X “ x0 ´ hu

ı

ď aγ
ż `8

0

|β ´ λas|sβ´1e´λas P
´

s P rminpZθ,δ0`rnδ
˚
θ,bn

, Zθ,δ0
q,maxpZθ,δ0`rnδ

˚
θ,bn

, Zθ,δ0
qs

ˇ

ˇ

ˇ
X “ x0 ´ hu

¯

ds.
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Remark now that
!

s P rminpZθ,δ0`rnδ˚θ,bn
, Zθ,δ0q,maxpZθ,δ0`rnδ˚θ,bn

, Zθ,δ0qs
)

“

"

e´s P

„

min

ˆ

max
´

ˇ

ˇF1 ` rnδ
˚
1,θ,bn

ˇ

ˇ

1
1´t ,

ˇ

ˇF2 ` rnδ
˚
2,θ,bn

ˇ

ˇ

1
t

¯

,max

ˆ

F
1

1´t

1 , F
1
t

2

˙˙

,

max

ˆ

max
´

ˇ

ˇF1 ` rnδ
˚
1,θ,bn

ˇ

ˇ

1
1´t ,

ˇ

ˇF2 ` rnδ
˚
2,θ,bn

ˇ

ˇ

1
t

¯

,max

ˆ

F
1

1´t

1 , F
1
t

2

˙˙*

Ă

"

e´s P

„

min

ˆ

ˇ

ˇF1 ` rnδ
˚
1,θ,bn

ˇ

ˇ

1
1´t , F

1
1´t

1

˙

,max

ˆ

ˇ

ˇF1 ` rnδ
˚
1,θ,bn

ˇ

ˇ

1
1´t , F

1
1´t

1

˙*

Y

"

e´s P

„

min

ˆ

ˇ

ˇF2 ` rnδ
˚
2,θ,bn

ˇ

ˇ

1
t , F

1
t

2

˙

,max

ˆ

ˇ

ˇF2 ` rnδ
˚
2,θ,bn

ˇ

ˇ

1
t , F

1
t

2

˙*

Ă

!

e´p1´tqs P
“

minp
ˇ

ˇF1 ` rnδ
˚
1,θ,bn

ˇ

ˇ , F1q,maxp
ˇ

ˇF1 ` rnδ
˚
1,θ,bn

ˇ

ˇ , F1q
‰

)

Y
 

e´ts P
“

minp
ˇ

ˇF2 ` rnδ
˚
2,θ,bn

ˇ

ˇ , F2q,maxp
ˇ

ˇF2 ` rnδ
˚
2,θ,bn

ˇ

ˇ , F2q
‰(

Ă

!

e´p1´tqs P rF1 ´ rnbn, F1 ` rnbns
)

Y
 

e´ts P rF2 ´ rnbn, F2 ` rnbns
(

“: An,1psq YAn,2psq.

Since for any subsets A and B we have 1ltAYBu ď 1ltAu ` 1ltBu, we can deduce that

P
´

s P rminpZθ,δ0`rnδ˚θ,bn
, Zθ,δ0q,maxpZθ,δ0`rnδ˚θ,bn

, Zθ,δ0qs|X “ x0 ´ hu
¯

ď P pAn,1psq|X “ x0 ´ huq ` P pAn,2psq|X “ x0 ´ huq

“

ż 1

0
1lte´p1´tqsPrv´rnbn,v`rnbnsudv `

ż 1

0
1lte´tsPrv´rnbn,v`rnbnsudv

ď 2rnbn ` 2rnbn “ 4rnbn.(A.20)

This implies that

?
nhpE

”

|qθ,δ0`rnδ˚θ,bn
´ qθ,δ0 |

ˇ

ˇ

ˇ
X “ x0 ´ hu

ı

ď 4
?
nhprnbn sup

aPr1{2,1s

ż 8

0
aγ |β ´ λas|sβ´1e´λasds.

This achieves the proof of Assertion 1 sinceK is bounded, supaPr1{2,1s
ş8

0 aγ |β´λas|sβ´1e´λasds ă

`8,
?
nhprn Ñ 0 and bn Ñ 0.

Proof of Assertion 2. The idea is to apply Lemma 2.2 in van der Vaart and Wellner (2007).
To this aim, first observe that the class Enpθ, bq admits an envelope function En of the same form
as Fn in (A.12), for some suitable constant M ą 0. Thus En satisfies the conditions (A.8) and
(A.9), with Fn replaced by En. Consequently, it remains to show the two following convergences

sup
θPΘ

PG2
npθ, bq ÝÑ 0,(A.21)

Jpdn, tGnpθ, bq : θ P Θu , L2q ÝÑ 0 for all dn Œ 0.(A.22)

We start to show (A.21). Since

PG2
npθ, bq “

ż

SK

K2puqE
´

|qθ,δ0`rnδ˚θ,b
´ qθ,δ0 |

2
ˇ

ˇ

ˇ
X “ x0 ´ hu

¯

fpx0 ´ huqdu,
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and (A.19), (A.21) follows from the proof of Assertion 1.

Now, to deal with the uniform entropy integral, we can adjust the lines of proof of Theorem
2.1 by considering the classes of functions defined on Rˆ Rˆ SX

φ
pjq
λ,β ˝W ˝Ψ, j “ 1, 2,

where Ψ is either the function

py1, y2, uq Ñ p´ logpF1py1|uqq,´ logpF2py2|uqq

or

py1, y2, uq Ñ
`

´ log
`
ˇ

ˇF1py1|uq ` rnδ
˚
1,θ,bpy1, y2, uq

ˇ

ˇ

˘

,´ log
`
ˇ

ˇF2py2|uq ` rnδ
˚
2,θ,bpy1, y2, uq

ˇ

ˇ

˘˘

which are VC -classes. This allows us to prove that there exist positive constants C and V such
that

sup
Q
NptGnpθ, bq : θ P Θu , L2pQq, τ}En}Q,2q ď C

ˆ

1

τ

˙V

,

from which (A.22) follows. This achieves the proof of Theorem 3.1.

A.10. Proof of Theorem 3.2. One can check that the proof of Theorems 2.3 and 2.4 are

mainly due to the asymptotic properties of p∆
pjq
α,x0,t

, j “ 1, 2 and 3. Thus, if we are able to prove

that the two key statistics Tn and qTn are sufficiently close enough, in the sense that

sup
tPr0,1s,aPr1{2,1s

?
nhp

ˇ

ˇ

ˇ

qTn ´ Tn

ˇ

ˇ

ˇ
pK, a, t, λ, β, γ|x0q “ oPp1q,(A.23)

and

sup
tPr0,1s,aPr1{2,1s

?
nhpE

”ˇ

ˇ

ˇ

qTn ´ Tn

ˇ

ˇ

ˇ

ı

pK, a, t, λ, β, γ|x0q “ op1q,(A.24)

then we can swap p∆
pjq
α,x0,t

by q∆
pjq
α,x0,t

, j “ 1, 2 and 3. According to Theorem 3.1, (A.23) is a direct
consequence of (A.24). So it remains to prove (A.24). Note that

?
nhp E

”ˇ

ˇ

ˇ

qTn ´ Tn

ˇ

ˇ

ˇ

ı

pK, a, t, λ, β, γ|x0q “
?
nE

«ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

”?
hpKhpx0 ´Xiqa

γ
qZβn,t,ie

´λa qZn,t,i

´
?
hpKhpx0 ´Xiqa

γZβt,ie
´λaZt,i

ıˇ

ˇ

ˇ

ı

ď
?
nE

”
ˇ

ˇ

ˇ
gθ,δn,npY

p1q, Y p2q, Xq ´ gθ,δ0,npY
p1q, Y p2q, Xq

ˇ

ˇ

ˇ

ı

ď
?
nPGnpθ, bq,

since δn P δ0 ` rnBp0, bq where Bp0, bq :“ tδ : }δ}H ď bu. This implies that

sup
tPr0,1s,aPr1{2,1s

?
nhp E

”ˇ

ˇ

ˇ

qTn ´ Tn

ˇ

ˇ

ˇ

ı

pK, a, t, λ, β, γ|x0q ď sup
tPr0,1s,aPr1{2,1s

?
nPGnpθ, bq “ op1q

by Assertion 1 since it is clear from its proof that bn Ñ 0 can be replaced by any fixed value b
in (A.20) without changing the conclusion. This achieves the proof of Theorem 3.2.
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