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Abstract

We consider the estimation of the tail coefficient of a Weibull-type distribution in the
presence of random covariates. The approach followed is non-parametric and consists of
locally weighted estimation in narrow neighborhoods in the covariate space. We introduce
two families of estimators and study their asymptotic behavior under some conditions on
the conditional response distribution, the kernel function, the density function of the inde-
pendent variables, and for appropriately chosen bandwidth and threshold parameters. We
also introduce a Weissman-type estimator for estimating upper extreme conditional quan-
tiles. The finite sample behavior of the proposed estimators is examined with a simulation
experiment. The practical applicability of the methodology is illustrated on a data set of sea
storm measurements.
Keywords: Extreme value statistics, Weibull-type distribution, regression, second order
condition.

1 Introduction

The estimation of the tail index of a distribution plays a central role in the area of extreme
value statistics. It is typically the first step in a practical data analysis, since such an estimate is
needed in e.g. models used to estimate upper extreme quantiles. In this paper, we will consider
some estimation problems within the Gumbel class, which is a rich subclass of the max-domain
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of attraction. Although different types of tail behavior are possible, all these distributions have
in common an extreme value index γ equal to zero and thus differentiating them on the basis
of this parameter alone is impossible. To solve this issue, we restrict our study to Weibull-type
distributions, which have distribution functions F defined for some θ > 0 as

1− F (y) = exp(−y1/θ`∗(y)), y > 0, (1)

where `∗ is a slowly varying function at infinity, i.e.

`∗(λy)

`∗(y)
→ 1 as y →∞ for all λ > 0.

The parameter θ, called the Weibull-tail coefficient, clearly governs the tail behavior, where
larger values correspond to a slower decay of 1 − F towards zero. Different values of it allow
the Weibull-type distributions to cover a large part of the Gumbel class, and hence to consti-
tute a flexible subgroup. The model finds important applications in areas such as hydrology,
meteorology, environmental and actuarial science, to name but a few. For a given data set one
can evaluate the adequacy of the Gumbel class by performing a test for γ = 0 versus γ 6= 0,
see e.g. Segers and Teugels (2000). The more specific Weibull-type class can be visually eval-
uated by an inspection of the Weibull quantile plot, which should become linear in the largest
observations. Goegebeur and Guillou (2010) introduced a formal goodness-of-fit test for the
semi-parametric Weibull-type model based on a quantification of the linearity of the upper part
of the Weibull quantile plot. In the analysis of univariate Weibull-type tails, the estimation of θ
and the subsequent estimation of upper extreme quantiles assume a central position. We refer
to Broniatowski (1993), Beirlant et al. (1995), Girard (2004), Gardes and Girard (2005, 2008a),
Diebolt et al. (2008), Dierckx et al. (2009), Goegebeur et al. (2010), Goegebeur and Guillou
(2011), and the references therein.

In this paper we will consider the estimation of the Weibull-tail coefficient and of upper
extreme quantiles when a random covariate X is recorded simultaneously with the variable of
interest Y . Thus, we do not consider the classical experimental situation where the researcher
can control X and then subsequently observe Y . Instead, X and Y are observed together, and
therefore X is considered to be random. Having methodology that allows to take covariate
information into account in an extreme value analysis is important as it enables one to differen-
tiate the tail behavior in terms of one or more risk factors. Our approach to this regression on
extreme values is non-parametric and based on locally weighted estimation.

The regression analysis of extreme values with fixed, i.e. nonrandom, covariates has been
extensively considered in the extreme value literature in a parametric, semi-parametric or non-
parametric way, but mostly in the case of Pareto-type distributions. On the contrary, the
development of extreme value regression methodology with random covariates is still in its in-
fancy. Some methodology has been introduced but again focusing on the case of Pareto-type
distributions. One has to wait for Daouia et al. (2013) for a non-parametric estimation method
that is valid in the general max-domain of attraction. In the present paper, we will develop a
methodology for estimating the tail coefficient and upper extreme conditional quantiles for the
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class of the Weibull-type distributions, which, as mentioned above, forms a rich subset of the
Gumbel class. To the best of our knowledge, this estimation problem has not been considered
in the extreme value literature.

The remainder of this paper is organized as follows. In the next section we introduce
two classes of estimators for the conditional Weibull-tail coefficient and study their asymptotic
properties. The estimation of upper extreme conditional quantiles is considered in Section 3.
In Section 4 we examine the small sample behavior of the proposed estimators by a simulation
experiment, and in Section 5 we show the results for the real data example. Section 6 concludes
the paper. The proofs of the main results are deferred to the appendix, while for other results
we refer to the supporting information which is online available.

2 Construction and asymptotic properties

Let (Xi, Yi), i = 1, . . . , n, be independent copies of the random vector (X,Y ) ∈ Rq×R+,0, where
X has a distribution with joint density function g, and the conditional survival function of Y
given X = x, denoted F̄ (y;x) := 1− F (y;x), is of Weibull-type, that is, for some θ(x) > 0,

F̄ (y;x) = exp(−y1/θ(x)`∗(y;x)), y > 0, (2)

where `∗ is a slowly varying function at infinity. The model can also be defined in terms of the
generalized inverse of F , denoted Q, i.e. Q(p;x) := inf{y : F (y;x) ≥ p}, 0 < p < 1:

Q(p;x) = (− ln(1− p))θ(x)`(− ln(1− p);x), (3)

where ` is again a slowly varying function at infinity (Bingham et al., 1987, p 6).

Our approach to the estimation of the Weibull-tail coefficient and of extreme conditional
quantiles is based on elemental kernel statistics of the form

T (t)
n (x,K) :=

1

n

n∑
i=1

Khn(x−Xi)(lnYi − lnωn)t+1{Yi > ωn}, (4)

where t ≥ 0, Khn(x) := K(x/hn)/hqn, where K is a joint density function on Rq, hn is a non-
random sequence of bandwidths with hn → 0 if n → ∞, 1{A} is the indicator function on
the event A and ωn is a local non-random threshold sequence satisfying ωn → ∞ if n → ∞.
The parameter t is a tuning parameter, introduced to allow for more flexibility. Since θ(x) is
a tail parameter for the conditional distribution of Y given X = x, it is natural to consider
statistics like (4) that involve exceedances over a high threshold, and that also occur in some
neighborhood of the point of interest x ∈ Rq.

To obtain the limiting behaviour of (4) we need to introduce some conditions on the con-
ditional quantile function Q(p;x), the density function g of the independent variables and the
kernel function K. Concerning Q(p;x), we introduce the so-called second order condition on its
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slowly varying function `.

Assumption (R) There exists a constant ρ(x) < 0 and a rate function b(.;x) satisfying
b(y;x)→ 0 as y →∞, such that for all λ ≥ 1, we have

ln

(
`(λy;x)

`(y;x)

)
= b(y;x)Dρ(x)(λ)(1 + o(1))

with Dρ(x)(λ) :=

∫ λ

1
tρ(x)−1dt, and where o(1) is uniform in λ ≥ 1, as y →∞.

Since lnx ∼ x − 1 for x → 1, we have that Assumption (R) makes the convergence of
`(λy;x)/`(y;x) to its limit, being 1, explicit. In fact, as shown in Geluk and de Haan (1987),
(R) implies that |b(y;x)| is regularly varying with index ρ(x), i.e. |b(λy;x)|/|b(y;x)| → λρ(x) as
y → ∞ for all λ > 0, so ρ(x) governs the rate of this convergence. If |ρ(x)| is small then the
convergence is slow and the estimation of tail quantities is generally difficult. Assumption (R)
is well accepted in the literature. It was formulated in a slightly different form in e.g. Diebolt et
al. (2008) and Goegebeur and Guillou (2011) in the Weibull-type framework, and Gardes and
Girard (2008b) invoked it for tail analysis in the Fréchet max-domain of attraction.

As a first step in the development of estimators for θ(x), we study in Lemma 1, given in the
appendix, the local behavior of the conditional expectation of a power transformed excess

m(ωn, t;x) := E[(lnY − lnωn)t+1{Y > ωn}|X = x].

Then, to deal with the randomness of X, we have to consider the unconditional expectation

m̃n(K, t;x) := E[Khn(x−X)(lnY − lnωn)t+1{Y > ωn}]

which is exactly the expectation of our elemental kernel T
(t)
n . In Lemma 2, given in the appendix,

we state its main asymptotic expansion under the following additional assumptions. The density
function of the covariate X is assumed to satisfy a Lipschitz condition. For all x, z ∈ Rq, the
Euclidean distance between x and z is denoted by d(x, z).

Assumption (G) There exists cg > 0 such that |g(x)− g(z)| ≤ cgd(x, z) for all x, z ∈ Rq.

For the weight or kernel function K we assume the following.

Assumption (K) K is a bounded density function on Rq, with support Ω included in the
unit hypersphere in Rq.

This assumption is standard in the framework of kernel estimation.

Finally, since the estimation takes place in a narrow neighborhood in the covariate space,
we have to introduce a condition on the oscillation of the conditional response distribution,
when considered as a function of x. This condition is formulated in terms of the conditional
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expectation m(ωn, t;x).

Assumption (F) The conditional excess function m(ωn, t;x) satisfies that, for ωn → ∞,
hn → 0, and some T > 0,

Φ(ωn, hn;x) := sup
t∈[0,T ]

sup
z∈Ω

∣∣∣∣m(ωn, t;x− hnz)
m(ωn, t;x)

− 1

∣∣∣∣→ 0 if n→∞.

This assumption is a smoothness condition on the underlying conditional distribution function
(when t = 0) and on some conditional expectations of power transformed excesses (when t > 0).
As illustrated in the supporting information, which is online available, this assumption is satis-
fied in case t = 0 by imposing some more structure on F̄ (in particular that `∗(.;x) is normalized)
and suitable conditions on hn and ωn.

From Lemmas 1 and 2 in the appendix, we obtain the following asymptotic expansion in
case t > 0

E(T (t)
n (x,K)) =

F̄ (ωn;x)

(− ln F̄ (ωn;x))t
g(x)θt(x)Γ(t+ 1)

×
{

1 + b(− ln F̄ (ωn;x);x)
t

θ(x)
(1 + o(1)) +O

(
1

(− ln F̄ (ωn;x))1−ε

)
+O(hn) +O(Φ(ωn, hn;x))} , (5)

while for t = 0

E(T (0)
n (x,K)) = g(x)F̄ (ωn;x)(1 +O(hn) +O(Φ(ωn, hn;x)). (6)

The leading terms of (5) and (6) motivate our estimators for θ(x):

θ̂(1)
n (x; t,K1,K2) =

(
(− ln ˆ̄F (ωn;x))tT

(t)
n (x,K1)

Γ(t+ 1)T
(0)
n (x,K2)

)1/t

, t > 0,

θ̂(2)
n (x; t,K1,K2) =

(− ln ˆ̄F (ωn;x))T
(t+1)
n (x,K1)

(t+ 1)T
(t)
n (x,K2)

, t ≥ 0,

where K1 and K2 are kernel functions satisfying (K), ˆ̄F (ωn;x) denotes a non-parametric esti-
mator for F̄ (ωn;x):

ˆ̄F (ωn;x) :=
T

(0)
n (x,K)

ĝn(x)
with ĝn(x) :=

1

n

n∑
i=1

Khn(x−Xi), (7)

being a classical kernel density estimator for g. The estimators can also be motivated as general-
isations of estimators that were initially presented in the univariate independent and identically
distributed (i.i.d.) setting, e.g. those by Goegebeur et al. (2010), to the regression case.

We can now establish the limiting distributions of θ̂
(1)
n (x; t,K1,K2) and θ̂

(2)
n (x; t,K1,K2),

when appropriately normalized. These are given in Theorems 1 and 2, respectively.

5



Theorem 1 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vector
(X,Y ) where the conditional quantile function of Y given X = x satisfies (3) with X a random
vector having density function g, and assume (R), (G), (F) hold and kernel functions K1 and
K2 satisfying (K). For all x ∈ Rq where g(x) > 0, we have that if hn → 0, ωn → ∞ for
n → ∞, with nhqnF̄ (ωn;x) → ∞,

√
nhqnF̄ (ωn;x)b(− ln F̄ (ωn;x);x) → λ, nhq+2

n F̄ (ωn;x) → 0,√
nhqnF̄ (ωn;x)/(− ln(F̄ (ωn;x)))1−ε → 0 for some small ε > 0, and nhqnF̄ (ωn;x)Φ2(ωn, hn;x)→

0, then √
nhqnF̄ (ωn;x)g(x) [θ̂(1)

n (x; t,K1,K2)− θ(x)]
D→ N

(
λ
√
g(x),

θ2(x)

t2Γ2(t+ 1)

[
Γ(2t+ 1)‖K1‖22 + Γ2(t+ 1)‖K2‖22 − 2Γ2(t+ 1)‖K1K2‖1

])
.

Theorem 2 Under the same assumptions as in Theorem 1, we have√
nhqnF̄ (ωn;x)g(x) [θ̂(2)

n (x; t,K1,K2)− θ(x)]
D→ N

(
λ
√
g(x),

θ2(x)Γ(2t+ 1)

(t+ 1)Γ2(t+ 1)

[
2(2t+ 1)‖K1‖22 + (t+ 1)‖K2‖22 − 2(2t+ 1)‖K1K2‖1

])
.

Note that the mean of the limiting distribution is not necessarily centered at zero, meaning
that the estimators may show some asymptotic bias, which is common for estimators of tail
parameters. Similar to the estimation of univariate Weibull-type tails (see e.g. Goegebeur et
al., 2010, Gardes and Girard, 2008a) we have that, apart from the factor

√
g(x), the mean of the

asymptotic distribution only depends on λ, and not on other distributional parameters, nor on t.
As expected, the asymptotic variance is increasing in θ(x) (i.e. when the tail of the conditional
response distribution becomes more heavy), and also depends on the kernel functions K1 and
K2, as well as on the tuning parameter t. In the common situation where the kernel functions
K1 and K2 are assumed to be equal, the asymptotic variance expressions in Theorems 1 and 2
simplify and are given by

AVar1 =
θ2(x)‖K‖22

t2

(
Γ(2t+ 1)

Γ2(t+ 1)
− 1

)
,

AVar2 = θ2(x)‖K‖22
Γ(2t+ 1)

Γ2(t+ 1)
,

respectively. If we compare the two variances (without the factor θ2(x)‖K‖22 which is in com-

mon), we can see that no estimator performs uniformly best, although θ̂
(1)
n (x; t,K,K) outper-

forms θ̂
(2)
n (x; t,K,K) over a wide range of values of the parameter t.
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3 Upper extreme quantile estimation

In this section we study the estimation of upper extreme conditional quantiles. Let Q̂(p;x)
denote the kernel estimator of the conditional quantile function Q(p;x), i.e.

Q̂(p;x) := inf{y : ˆ̄F (y;x) ≤ 1− p}, p ∈ (0, 1),

where ˆ̄F is defined in (7).

We consider the behavior of Q̂(1−αn;x) for αn → 0 as n→∞. In the first instance we work

under an intermediate order condition
√
nhqnαn(− lnαn)→∞. Let V (y;x) := y1/θ(x)`∗(y;x), so

that F̄ (y;x) = exp(−V (y;x)) and assume that `∗(y;x) is a normalized slowly varying function
(see Bingham et al., 1987, p 15), i.e.

`∗(y;x) = c(x)e
∫ y
1
ε(u;x)
u

du,

for y ≥ 1, where c(x) > 0 and ε(t;x)→ 0 as t→∞. In terms of V (y;x) we have that

V (y;x) = c(x)e
∫ y
1
ε̃(u;x)
u

du,

where ε̃(t;x)→ 1/θ(x) as t→∞. In the sequel we will say for short that V (y;x) is normalized
regularly varying. Note that in this case

yV ′(y;x)

V (y;x)
= ε̃(y;x), a.e.

Theorem 3 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vector
(X,Y ) where the conditional survival function of Y given X = x satisfies (2) with a normalized
regularly varying function V (y;x), X a random vector having density function g, and assume
(G), (F) and (K) hold. For all x ∈ Rq where g(x) > 0, we have that if hn → 0, αn → 0 for
n→∞, with nhqnαn →∞, nhq+2

n αn → 0, and nhqnαnΦ2(Q(1−αn;x)(1 + o(1)), hn;x)→ 0 then

(− lnαn)
√
nhqnαng(x)

[
Q̂(1− αn;x)

Q(1− αn;x)
− 1

]
D→ N(0, θ2(x)‖K‖22).

Similarly to the Weibull-tail coefficient estimators (see Theorems 1 and 2), the asymptotic vari-
ance of the extreme quantiles is increasing in θ(x) and depends on the kernel function K. The
condition nhqnαn →∞ in Theorem 3 implies that αn should be of a larger order than 1/(nhqn),
and hence, ultimately, αn > 1/n. As a consequence, the estimator Q̂(1− αn;x) cannot be used
to extrapolate beyond the data range.

For the purpose of estimating quantiles that are further in the upper tail than the (1−αn)−
quantile, we propose an estimator of Q(1 − βn;x) with τn := (− lnβn)/(− lnαn) → τ ∈ (1,∞)
if αn → 0, that is in the spirit of the Weissman estimator (Weissman, 1978):

Q̂W (1− βn;x) := Q̂(1− αn;x)τ θ̂(x)
n ,

where θ̂(x) is either θ̂
(1)
n (x; t,K1,K2) or θ̂

(2)
n (x; t,K1,K2).
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Theorem 4 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vector
(X,Y ) where the conditional survival function of Y given X = x satisfies (2) with a normalized
regularly varying function V (y;x), X a random vector having density function g, and assume
(R), (G), (F) hold and kernel functions K1 and K2 satisfying (K). For all x ∈ Rq where
g(x) > 0, we have that if hn → 0, αn → 0, τn → τ ∈ (1,∞) for n→∞, with nhqnαn →∞ and,
for some small ε > 0,√

nhqnαn max

{
b(− lnαn;x), hn,

1

(− lnαn)1−ε ,Φ(Q(1− αn;x)(1 + o(1)), hn;x)

}
→ 0,

then √
nhqnαng(x)

ln τn

[
Q̂W (1− βn;x)

Q(1− βn;x)
− 1

]
D→ N(0, V 2(x)),

where V 2(x) denotes the asymptotic variance of either θ̂
(1)
n (x; t,K1,K2) or θ̂

(2)
n (x; t,K1,K2).

Remark that the extreme quantile estimator inherits the asymptotic behavior of the estimator
for θ(x) that was used. For what concerns the improvement of Q̂W (1− βn;x) over Q̂(1−αn;x)
in terms of extrapolation: note that one can take e.g. βn = ατ

∗
n , for some τ∗ > 1, leading

to βn > 1/nτ
∗
, which relaxes the earlier constraint that αn > 1/n. By taking τ∗ large one

thus improves considerably the order of the quantile that can be estimated. Note also that the
only condition that we impose on βn, namely (− lnβn)/(− lnαn) → τ ∈ (1,∞), simplifies the
interpretation in terms of extrapolation compared to Daouia et al. (2013) where they impose
several conditions that mix the parameters αn and βn together with several functions involving
the conditional extreme value index, the conditional quantile and an auxiliary function. In that
case, it is very difficult to obtain information about the possible rate of βn.

4 Simulations

In this section we illustrate our methodology with a simulation experiment. For the practical
implementation of our estimators we have to determine both the bandwidth parameter hn and
the threshold ωn. For the latter, we take, as usual in extreme value statistics, the (k + 1)-th
largest response observation in the ball B(x, hn). There is, in fact, some discrepancy between
the theory, established in case of a fixed, i.e. non-random, threshold and practical use with
a data-driven one. This is often observed in extreme value statistics, see for instance, Smith
(1987) and Davison and Smith (1990), in the framework of GPD modelling of excesses, or Wang
and Tsai (2009) and Goegebeur et al. (2014b), for Pareto-type models. Instead of a nonrandom
threshold one could have worked with a random threshold, as was done e.g. by Stupfler (2013)
in the general max-domain of attraction. However, this approach with a random threshold
would make the theoretical derivations much more difficult. Also, in the general max-domain
of attraction, Goegebeur et al. (2014a) observed that working with a nonrandom threshold can
lead to the same asymptotic distributions as the one obtained under a random threshold (as in
Stupfler, 2013), though the practical performance of the approach based on a random threshold
is not better. One can expect that similar findings will also apply to the present paper. The
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selection of (hn, k) is carried out using a data driven method which does not require any prior
knowledge about the function θ(x). This approach is based on a two step procedure, where we
first select the bandwidth parameter hn using a cross-validation criterion

hcv := argmin
hn∈H

n∑
i=1

n∑
j=1

(
1 {Yi ≤ Yj} − F̂n,−i (Yj ;Xi)

)2
, (8)

where H is a grid of values for hn and

F̂n,−i (y;x) :=

∑n
j=1,j 6=iKhn (x−Xj)1 {Yj ≤ y}∑n

j=1,j 6=iKhn (x−Xj)
.

This criterion was introduced in Yao (1999), implemented by Gannoun et al. (2002) and con-
sidered in an extreme value context by Daouia et al. (2011, 2013). Using this bandwidth, we
compute in the second step, the estimates for θ(x) with k = 5, . . . , kmax, where kmax is an ap-
propriately chosen value. The median of these estimates is then the estimate we use for θ(x).
From the simulation results reported in Gardes and Girard (2008a) and Goegebeur et al. (2010)
for the estimation of θ in the univariate framework, we deduce that the parameter kmax should
be chosen relatively small compared to the typical number of observations in B(x, hcv), because
for Weibull-type distributions the bias of the tail estimators is in some cases important. Con-
cerning the estimation of upper extreme conditional quantiles, we use the estimate for θ(x) we
just obtained and compute the extreme conditional quantiles for k = 5, . . . , kmax. We use again
the median of these values as our final conditional quantile estimate.

We report the results for two conditional distributions of Y given X = x, which are of
Weibull-type:

• The strict Weibull distribution W(α(x), λ),

1− F (y;x) = e−λy
α(x)

, y > 0;α(x), λ > 0,

for which θ(x) = 1/α(x) and ρ(x) = −∞. We consider the case λ = 1.

• The extended Weibull distribution EW(α(x), β) (Klüppelberg and Villaseñor, 1993),

1− F (y;x) = r(y)e−y
α(x)

,

where α(x) > 0 and r(y) is a regularly varying function at infinity with index β. Here
θ(x) = 1/α(x), b(y;x) = −β ln y/[α2(x)y] and ρ(x) = −1. We choose r(y) = 1/y.

In the simulation experiment we also considered some other conditional Weibull-type distribu-
tions, like the Gaussian, Gamma and perturbed Weibull distributions, but these lead to similar
results and therefore, for brevity, we omit them from the paper.

For the Weibull-tail coefficient θ(x) and the covariate distribution we consider two settings:
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• Setting 1: X ∼ U(0, 1) and

θ(x) =
1

2

(
1

10
+ sin(πx)

)(
11

10
− 1

2
exp

(
−64

(
x− 1

2

)2
))

.

This function was also considered in Daouia et al. (2011), though in the framework of
Pareto-type distributions. The function is differentiable with several stationary points.

• Setting 2: X ∼ Beta(1.25, 1.5) and

θ(x) =
1

4

{
1 + exp(−60(x− 1/4)2)1{3x ∈ (0, 1]}+ exp(−5/12)1{3x ∈ (1, 2]}

+(5− 6x)(exp(−5/12)1{3x ∈ (2, 5/2]} − 1{3x ∈ (5/2, 3)})} ,

which was proposed by Gardes and Stupfler (2013), also in the framework of Pareto-type
modelling. This function is considered because it has a smooth but non-constant part, a
constant part and also some points where it is continuous but not differentiable.

For all the distributions we simulate N = 500 samples of size n = 1000. As measures of
efficiency we use the empirical root mean squared error and the bias, computed over points
x1, . . . , xM , regularly spread over the covariate space, as follows

RMSE(ξ̂(.)) :=

√√√√ 1

MN

M∑
m=1

N∑
j=1

(
ξ̂j(xm)− ξ(xm)

)2
,

Bias(ξ̂(.)) :=
1

M

M∑
m=1

∣∣∣∣∣∣ 1

N

N∑
j=1

ξ̂j(xm)− ξ(xm)

∣∣∣∣∣∣ ,
where ξ̂j(xm) is the estimator for the tail parameter ξ(xm), either the Weibull-tail coefficient or
an upper extreme conditional quantile, from simulation run j at covariate value xm. Note that
in the bias calculation we use the absolute value to avoid that positive and negative biases at
different values of x cancel each other out.

In the estimation of θ(x) we consider the estimators θ̂
(1)
n (x; t,K1,K2) and θ̂

(2)
n (x; t,K1,K2)

for different values of t, and where both kernel functions are taken as the bi-quadratic kernel
function

K(x) =
15

16

(
1− x2

)2
1{x ∈ [−1, 1]}.

The choice of the kernel function is not very crucial for the practical performance of our esti-
mators. Note that we rerun our simulations for other choices of kernel functions, like e.g. the
triweight kernel function K(x) = 35(1−x2)3/32, x ∈ [−1, 1], and the results do not change a lot.
To keep the length of the paper under control, we only report the results for this bi-quadratic
function. The bandwidth hn is selected using the cross validation criterion in (8) on a grid of
hn ∈ {0.05, 0.075, . . . , 0.15}, whereafter the estimate of θ(x) is computed as described above
using kmax = 25. Concerning the estimation of upper extreme conditional quantiles, we examine
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the behaviour of Q̂W (1 − βn;x) obtained with θ̂
(1)
n (x; t,K,K) and θ̂

(2)
n (x; t,K,K), denoted as

Q̂
(1)
W (1 − βn;x) and Q̂

(2)
W (1 − βn;x), respectively, and quantile levels βn = 1/1200, 1/2000 and

1/4000. The considered quantile orders imply a rather serious extrapolation since the local sam-
ple sizes are typically much smaller than n. These quantile estimators are compared with the
extreme quantile estimator from Daouia et al. (2013), denoted q̃RPn (βn|x), which is developed
for the full max-domain of attraction, and therefore it also applies in our context of conditional
Weibull-type tails. Concerning the latter we considered constant and linear weights, leading to
the estimators q̃RP,1n (βn|x) and q̃RP,2n (βn|x), respectively, and both were implemented with J = 3
and J = 4, where J can be seen as the number of elemental Pickands statistics the estimator is
based on. For more details we refer to the Daouia et al. (2013) paper. The data driven method
is the one where h and k are selected separately, which is consistent with the data driven method
considered for our estimators. Note that for the estimation of the Weibull-tail coefficient θ(x)
there is to date no alternative estimation procedure available as basis for comparison.

Thus, summarised, in the simulation experiment we compared the small sample behaviour

of the Weibull-tail coefficient estimators θ̂
(1)
n (x; t,K,K) and θ̂

(2)
n (x; t,K,K), and that of the ex-

treme conditional quantile estimators Q̂
(1)
W (1−βn;x), Q̂

(2)
W (1−βn;x), q̃RP,1n (βn|x) and q̃RP,2n (βn|x).

The estimator θ̂
(1)
n (x; t,K,K) outperforms θ̂

(2)
n (x; t,K,K) in terms of bias and RMSE, for all

values of t and all distributions, and similarly, the extreme quantile estimator Q̂
(1)
W (1−βn;x) has

a performance superior to that of Q̂
(2)
W (1 − βn;x). For what concerns the Daouia et al. (2013)

estimators, q̃RP,1n (βn|x) with J = 4 has the best performance. For brevity, in the paper we only
comment on the performance of the best estimators, and draw the following conclusions

• In Tables 1 and 2 we show the performance of θ̂
(1)
n (x; t,K,K) and Q̂

(1)
W (1−βn;x), obtained

with the data driven strategy on Settings 1 and 2, respectively. The results indicate
that in most cases the best estimation results are obtained for small values of the tuning
parameter t. As expected, the behaviour of the extreme quantile estimator deteriorates
as more extreme quantile orders are considered, though the increase in bias and RMSE is
modest.

• Comparison of the results in Tables 1 and 2 with Table 3 indicates that the estimator

Q̂
(1)
W (1− βn;x) is better than q̃RP,1n (βn|x) in terms of RMSE for all values of βn and t. In

terms of bias it is better for almost all βn and t.

From these simulations, one can say that the proposed Weissman-type extreme conditional
quantile estimator is competitive compared to the Daouia et al. (2013) estimator, which is to
date the only alternative. However, this result is not completely unexpected since the Daouia
et al. (2013) estimator is more general in that it was proposed for the general max-domain of
attraction, whereas ours is specific for the class of Weibull-type distributions.

5 Case study: sea storm data

To illustrate the usefulness and practical relevance of the model considered and the methodology
developed in this paper we will use the sea level data presented in Chapter 6 of de Haan and
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Ferreira (2006); see also de Haan and de Ronde (1998) for a more elaborate discussion. This
data set consists of measurements of wave height (HmO) and still water level (SWL), both
expressed in meters, recorded during 828 storm events that are relevant for the seawall called
Pettemer Zeewering in the province of North Holland (The Netherlands). The data have been
extensively analysed in the extreme value literature. For instance, in Draisma et al. (1999) the
focus was on estimating the tail of the wave height distribution, ignoring the information in the
variable still water level. Their analysis indicated that the HmO distribution belongs to the
Gumbel class. On the other hand, de Haan and de Ronde (1998) and Draisma et al. (2004)
took a multivariate approach and estimated the tail dependence between the two variables, i.e.
when both variables are simultaneously large. Our approach is complementary to these earlier
analyses in that we want to estimate tail parameters of the HmO distribution given a value for
the variable SWL, where the latter is not necessarily extreme.

The scatterplot of the data is shown in Figure 1 (a), and clearly indicates that higher waves
tend to occur together with higher still water levels. For engineers it can be of interest to
study the distribution of wave heights at a given value of still water level, e.g. to decide on
the height of a sea wall or, related to this, to assess the danger of overflowing an existing sea
wall. We illustrate the adequacy of the Weibull-type model (2) for the variable HmO given that
SWL = 0.6, by the Weibull quantile plot of the HmO measurements with corresponding SWL
in a neighborhood of SWL = 0.6, say in the interval [0.5,0.7]; see Figure 1 (b). The Weibull
quantile plot clearly becomes linear in the largest observations, which supports the hypothesis
of an underlying Weibull-type model for the conditional response distribution. Similar quantile
plots were obtained at other positions in the covariate space. Obviously, estimators for param-
eters related to the conditional distribution of HmO given SWL should take into account that
the available SWL measurements are in fact realisations of a random covariate. Based on these
considerations we can conclude that the methodology developed in this paper is appropriate for
analysing the sea storm data.

As a first step we focus on the estimation of the conditional Weibull-tail coefficient of the
variable HmO, considered as a function of SWL. In Figure 1 (c) we show the tail coefficient

estimates θ̂
(1)
n (SWL; 0.2,K,K), where K is the bi-quadratic kernel function, as a function of

SWL. We focus here only on the estimator θ̂
(1)
n (SWL; t,K,K), since in the simulations it was

found to be superior to θ̂
(2)
n (SWL; t,K,K) in terms of bias and RMSE (for all values of t). The

value of t used, t = 0.2, can also be motivated from the simulation results. The tuning parame-
ters h and k were selected according to the data driven method with hn ∈ {0.05, 0.075, . . . , 0.15}
and kmax = 25, as described in Section 4. The figure indicates that the estimates for the tail
coefficient generally follow the pattern in the data in that the estimates tend to be larger at
SWL positions where the extreme HmO measurements show larger spacings. To illustrate the
extra flexibility of our approach, we also performed a univariate analysis of the tail of the HmO
distribution, thus ignoring the information in SWL, using the mean-excess based estimator for
θ proposed in Goegebeur and Guillou (2011). Figure 1 (d) shows these univariate estimates for
the Weibull-tail coefficient of the variable HmO as a function of k. This plot suggests a stable
estimate of θ for k values between 50 and 100, with median 0.42. This median value is also
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shown as the solid horizontal reference line in Figure 1 (c), and we also show the univariate 95%
bootstrap interval (based on 1000 bootstrap samples). The univariate estimate thus provides
some average tail coefficient estimate, and from the bootstrap interval we can conclude that it
is clearly not able to provide an adequate description of the conditional tails.

Next, we consider the estimation of upper extreme quantiles of the HmO distribution con-
ditional on a given value of SWL. In Figure 1 (e) we show the Weissman-type quantile estimate

Q̂
(1)
W (1 − 1/1200;SWL) (solid line) and Q̂

(1)
W (1 − 1/4000;SWL) (dotted line) as a function of

SWL. This estimate represents the wave height that will be exceeded on average once in 1200
and 4000 storms, respectively, for a given value of SWL. Again the estimate follows the pat-
tern in the data, and it clearly extrapolates beyond the data range, as it should. As a simple
goodness-of-fit check we also estimated a less extreme conditional quantile, namely the condi-
tional quantile 1-1/50, and counted the number of observations exceeding that quantile. The
proportion exceeding was 0.024, which is in good agreement with the theoretical conditional
exceedance probability 0.02. In panel (f) of Figure 1 we show the estimator q̃RP,1n (1/1200|SWL)
(solid line) and q̃RP,1n (1/4000|SWL) (dotted line) with J = 4 of Daouia et al. (2013). This esti-
mate also follows the pattern in the data reasonably well, though it is generally located slightly
below our extreme conditional quantile estimate and also exhibits a larger variability compared
to our method. Note also that due to data sparsity the Daouia et al. (2013) estimate could not
be computed for the very small and large values of SWL. For some values of SWL the estimate
q̃RP,1n (1/4000|SWL) is slightly below q̃RP,1n (1/1200|SWL), which is due to the tuning parameter
selection method.

6 Conclusion

We considered the estimation of the tail coefficient and upper extreme conditional quantiles
for Weibull-type distributions when there are random covariates. Two families of estimators
were introduced and their asymptotic properties were derived. In extreme value statistics the
bias of estimators for tail quantities is often an issue. In future research we will focus on the
development of bias-corrected estimators, and on related robustness issues.

Appendix

In this appendix, we give the proofs of our main results.

First, we study the local behaviour of the conditional expectation of a power transformed
excess.

Lemma 1 Case (i), t = 0:

m(ωn, 0;x) = F̄ (ωn;x).
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Case (ii), t > 0: assume (3) and (R), then for some small ε > 0 and ωn →∞ we have that

m(ωn, t;x) =
F̄ (ωn;x)

(− ln F̄ (ωn;x))t
θt(x)Γ(t+ 1)

{
1 + b(− ln F̄ (ωn;x);x)

t

θ(x)
(1 + o(1))

+O

(
1

(− ln F̄ (ωn;x))1−ε

)}
.

Proof of Lemma 1

The case t = 0 is trivial so we only focus on the case where t > 0. Let pn := F (ωn;x) and
p̃n = 1− (1− pn)/ ln(e/(1− pn)). Note that pn ≤ p̃n ≤ 1. From the inverse probability integral
transform, and denoting V ∼ U(0, 1), we have that

m(ωn, t;x) = E[(lnQ(V ;x)− lnQ(pn;x))t+]

=

∫ p̃n

pn

(lnQ(v;x)− lnQ(pn;x))tdv +

∫ 1

p̃n

(lnQ(v;x)− lnQ(pn;x))tdv

=: I1 + I2.

Concerning I1, from (3) and (R), we obtain

I1 = (1− pn)

∫ 1

1−p̃n
1−pn

[
θ(x) ln

(
1 +

− ln z

− ln(1− pn)

)

+b(− ln(1− pn);x)Dρ(x)

(
1 +

− ln z

− ln(1− pn)

)
(1 + o(1))

]t
dz.

Inspired by the inequality

ξ − 1

2
x2 ≤ Dξ(1 + x)− x ≤ 0, (9)

for ξ ≤ 0 and x ≥ 0, we write

I1 =
1− pn

(− ln(1− pn))t

∫ 1

1−p̃n
1−pn

(− ln z)t {θ(x)

+θ(x)
− ln(1− pn)

− ln z

[
ln

(
1 +

− ln z

− ln(1− pn)

)
− − ln z

− ln(1− pn)

]
+ b(− ln(1− pn);x)(1 + o(1))

+b(− ln(1− pn);x)
− ln(1− pn)

− ln z

[
Dρ(x)

(
1 +

− ln z

− ln(1− pn)

)
− − ln z

− ln(1− pn)

]
(1 + o(1))

}t
dz.

From (9) we deduce

sup
z∈[ 1−p̃n

1−pn
,1]

∣∣∣∣− ln(1− pn)

− ln z

[
ln

(
1 +

− ln z

− ln(1− pn)

)
− − ln z

− ln(1− pn)

]∣∣∣∣ ≤ ln(1− ln(1− pn))

2(− ln(1− pn))
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and hence

sup
z∈[ 1−p̃n

1−pn
,1]

∣∣∣∣− ln(1− pn)

− ln z

[
ln

(
1 +

− ln z

− ln(1− pn)

)
− − ln z

− ln(1− pn)

]∣∣∣∣ = o(1),

for pn ↑ 1. Similarly

sup
z∈[ 1−p̃n

1−pn
,1]

∣∣∣∣− ln(1− pn)

− ln z

[
Dρ(x)

(
1 +

− ln z

− ln(1− pn)

)
− − ln z

− ln(1− pn)

]∣∣∣∣ = o(1),

for pn ↑ 1.

By Taylor’s theorem

I1 =
1− pn

(− ln(1− pn))t

{
θt(x)

∫ 1

1−p̃n
1−pn

(− ln z)tdz

+tθt(x)

∫ 1

1−p̃n
1−pn

(− ln z)t
− ln(1− pn)

− ln z

[
ln

(
1 +

− ln z

− ln(1− pn)

)
− − ln z

− ln(1− pn)

]
dz(1 + o(1))

+b(− ln(1− pn);x)tθt−1(x)

∫ 1

1−p̃n
1−pn

(− ln z)tdz(1 + o(1))

+b(− ln(1− pn);x)tθt−1(x)

∫ 1

1−p̃n
1−pn

(− ln z)t
− ln(1− pn)

− ln z

×
[
Dρ(x)

(
1 +

− ln z

− ln(1− pn)

)
− − ln z

− ln(1− pn)

]
dz(1 + o(1))

}
=:

1− pn
(− ln(1− pn))t

{I1,1 + I1,2 + I1,3 + I1,4} .

For I1,1, by straightforward calculus, we obtain

I1,1 = θt(x)Γ(t+ 1) +O

(
lnt(1− ln(1− pn))

− ln(1− pn)

)
.

Concerning I1,2, use (9) to obtain

|I1,2| ≤
tθt(x)

2(− ln(1− pn))

∫ 1

1−p̃n
1−pn

(− ln z)t+1dz(1 + o(1)) = O

(
1

− ln(1− pn)

)
.

The terms I1,3 and I1,4 can be analyzed in a similar way and yield

I1,3 = b(− ln(1− pn);x)tθt−1(x)Γ(t+ 1)(1 + o(1)),

|I1,4| = O

(
b(− ln(1− pn);x)

− ln(1− pn)

)
.
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Collecting the terms gives

I1 =
1− pn

(− ln(1− pn))t
{
θt(x)Γ(t+ 1) + b(− ln(1− pn);x)tθt−1(x)Γ(t+ 1)(1 + o(1))

+O

(
lnt(1− ln(1− pn))

− ln(1− pn)

)}
.

For what concerns I2 we introduce the tail quantile function U , defined as U(y;x) = Q(1−1/y;x),
y > 1, and write

I2 =

∫ 1

p̃n

[
lnU

(
1− pn
1− v

1

1− pn
;x

)
− lnU

(
1

1− pn
;x

)]t
dv.

The Weibull-type distributions are a subset of the Gumbel max-domain of attraction, and hence
for some positive function a(.;x) we have that

lim
y→∞

U(y;x)

a(y;x)
(lnU(uy;x)− lnU(y;x)) = lnu, ∀u > 0, (10)

see for instance de Haan and Ferreira (2006), p 101. Thus

I2 =

 a
(

1
1−pn ;x

)
U
(

1
1−pn ;x

)
t ∫ 1

p̃n

 lnU
(

1−pn
1−v

1
1−pn ;x

)
− lnU

(
1

1−pn ;x
)

a
(

1
1−pn ;x

)
/U
(

1
1−pn ;x

)
t dv =: ãt

(
1

1− pn
;x

)
Ĩ2.

Note that (1− pn)/(1− v) ≥ (1− pn)/(1− p̃n) ≥ 1, for v ∈ [p̃n, 1).

Now use Corollary B.2.10 in de Haan and Ferreira (2006) p 376, to obtain for any ε > 0
and for some c > 0 that for pn sufficiently large

Ĩ2 ≤ c

∫ 1

p̃n

(
1− pn
1− v

)tε
dv = c

1− pn
1− tε

1

(− ln(1− pn))1−tε (1 + o(1)),

provided tε < 1.

Finally, for ã(.;x) we use Lemma S1 (see supporting information) according to which

ã

(
1

1− pn
;x

)
∼ E(lnQ(V ;x)− lnQ(pn;x)|V > pn)

if pn ↑ 1. Now

E(lnQ(V ;x)− lnQ(pn;x)|V > pn) =
θ(x)

− ln(1− pn)

∫ 1

0
(− ln z)dz

+θ(x)

∫ 1

0

[
ln

(
1 +

− ln z

− ln(1− pn)

)
− − ln z

− ln(1− pn)

]
dz

+
b(− ln(1− pn);x)

− ln(1− pn)

∫ 1

0
(− ln z)dz(1 + o(1))

+b(− ln(1− pn);x)

∫ 1

0

[
Dρ(x)

(
1 +

− ln z

− ln(1− pn)

)
− − ln z

− ln(1− pn)

]
dz(1 + o(1))

=: I2,1 + I2,2 + I2,3 + I2,4.
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With arguments similar to those used when considering I1 we obtain

I2,1 =
θ(x)

− ln(1− pn)
,

I2,2 = O

(
1

(− ln(1− pn))2

)
,

I2,3 =
b(− ln(1− pn);x)

− ln(1− pn)
(1 + o(1)),

I2,4 = O

(
b(− ln(1− pn);x)

(− ln(1− pn))2

)
.

Consequently

E(lnQ(V ;x)− lnQ(pn;x)|V > pn) = O

(
1

− ln(1− pn)

)
.

This then gives that

I2 = O

(
1− pn

(− ln(1− pn))t+1−δ

)
,

for some small δ > 0.

Combining the results for I1 and I2 establishes the result of Lemma 1. �

Now, to deal with the randomness ofX we consider the unconditional expectation m̃n(K, t;x)
and derive in the next lemma its main asymptotic expansion under further conditions.

Lemma 2 Assume (3), (R), (G), (K) and (F). For all x ∈ Rq where g(x) > 0 we have that if
ωn →∞ and hn → 0 then

m̃n(K, t;x) = m(ωn, t;x)g(x)(1 +O(hn) +O(Φ(ωn, hn;x))).

Note: (i) In Lemma 2, the proof of the result for the case t = 0 can also be obtained without
conditions (3) and (R). (ii) Because (Xi, Yi), i = 1, . . . , n, are independent and identically

distributed random vectors, we have that m̃n(K, t;x) = E(T
(t)
n (x,K)).

The proof of Lemma 2 is elementary and therefore it is given in the supporting information.

Since the estimators θ̂
(1)
n (x; t,K1,K2) and θ̂

(2)
n (x; t,K1,K2) are functions of elemental kernel

statistics (4), we need to derive the joint asymptotic behaviour of a vector of such statistics,

when appropriately normalized. Let T̃
(t)
n (x,K) := (− ln F̄ (ωn;x))t T

(t)
n (x,K), and for some fixed

positive integer J ,

T′n :=
1

F̄ (ωn;x)g(x)
[T̃ (t1)
n (x,K1), . . . , T̃ (tJ )

n (x,KJ)],

and let Σ be a (J × J) matrix with elements

σj,k := θtj+tk(x)‖KjKk‖1Γ(tj + tk + 1).
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Lemma 3 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vector
(X,Y ) where the conditional quantile function of Y given X = x satisfies (3) with X a random
vector having density function g, and assume (R), (G), (F) hold and kernel functions K1, . . . ,KJ

satisfying (K). For all x ∈ Rq where g(x) > 0, we have that if hn → 0, ωn → ∞ for n → ∞,
with nhqnF̄ (ωn;x)→∞, then√

nhqnF̄ (ωn;x)g(x) [Tn − E(Tn)]
D→ NJ(0,Σ).

Proof of Lemma 3

We make use of the Cramér-Wold device (see e.g. van der Vaart, 1998, p 16), according to
which it is sufficient to prove that for all ξ ∈ RJ we have that

Ψn :=
√
nhqnF̄ (ωn;x)g(x) ξ′[Tn − E(Tn)]

D→ N(0, ξ′Σξ).

From straightforward calculations we obtain

Ψn =

n∑
i=1

√
hqn

nF̄ (ωn;x)g(x)

 J∑
j=1

ξj(− ln F̄ (ωn;x))tjKj,hn(x−Xi)(lnYi − lnωn)
tj
+1{Yi > ωn}

−E

 J∑
j=1

ξj(− ln F̄ (ωn;x))tjKj,hn(x−Xi)(lnYi − lnωn)
tj
+1{Yi > ωn}


=:

n∑
i=1

Wi.

Note that W1, . . . ,Wn are i.i.d. random variables, and hence Var(Ψn) = nVar(W1). Now

Var(W1) =
hqn

nF̄ (ωn;x)g(x)

J∑
j=1

J∑
k=1

ξjξk(− ln F̄ (ωn;x))tj+tkCj,k,

where

Cj,k := Cov
(
Kj,hn(x−X1)(lnY1 − lnωn)

tj
+1{Y1 > ωn},Kk,hn(x−X1)(lnY1 − lnωn)tk+1{Y1 > ωn}

)
.

We then have

Cj,k =
‖KjKk‖1

hqn
E
[

1

hqn‖KjKk‖1
Kj

(
x−X1

hn

)
Kk

(
x−X1

hn

)
(lnY1 − lnωn)

tj+tk
+ 1{Y1 > ωn}

]
−E

[
Kj,hn(x−X1)(lnY1 − lnωn)

tj
+1{Y1 > ωn}

]
E
[
Kk,hn(x−X1)(lnY1 − lnωn)tk+1{Y1 > ωn}

]
.

Using Lemmas 1 and 2 we obtain that

Cj,k =
‖KjKk‖1

hqn

F̄ (ωn;x)

(− ln F̄ (ωn;x))tj+tk
g(x)θtj+tk(x)Γ(tj + tk + 1)(1 + o(1)),
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and consequently Var(Ψn) = ξ′Σξ(1 + o(1)).

To establish the asymptotic normality of Ψn we verify Lyapounov’s criterion for triangular
arrays of random variables, see e.g. Billingsley (1995), p 362. In the present context this
simplifies to proving that

∑n
i=1 E|Wi|3 = nE|W1|3 → 0. We have

E|W1|3 ≤
(

hqn

nF̄ (ωn;x)g(x)

)3/2

×

E

 J∑
j=1

|ξj |(− ln F̄ (ωn;x))tjKj,hn(x−X1)(lnY1 − lnωn)
tj
+1{Y1 > ωn}

3
+3E

 J∑
j=1

|ξj |(− ln F̄ (ωn;x))tjKj,hn(x−X1)(lnY1 − lnωn)
tj
+1{Y1 > ωn}

2
×E

 J∑
j=1

|ξj |(− ln F̄ (ωn;x))tjKj,hn(x−X1)(lnY1 − lnωn)
tj
+1{Y1 > ωn}


+4

E
 J∑
j=1

|ξj |(− ln F̄ (ωn;x))tjKj,hn(x−X1)(lnY1 − lnωn)
tj
+1{Y1 > ωn}

3 .

Again by using Lemmas 1 and 2 we obtain that

E|W1|3 = O

((
n
√
nhqnF̄ (ωn;x)

)−1
)
, (11)

and hence, under the conditions of the lemma nE|W1|3 → 0. tu

In order to obtain the limiting distribution of θ̂
(i)
n (x; t,K1,K2), i = 1, 2, we also need a result

concerning ˆ̄F (ωn;x) as defined in (7). Daouia et al. (2011) studied the asymptotic behaviour of
ˆ̄F (ωn;x) in the framework of conditional Pareto-type tails, whereas in Daouia et al. (2013) its
behaviour was studied for the general max-domain of attraction, though assuming that F̄ (y;x)
is twice differentiable. Lemma 4 below is essentially a simplified version of Proposition 1 in
Daouia et al. (2013) since we only consider a single extreme level ωn, although we do not as-
sume differentiability of F̄ (y;x) nor a max-domain of attraction condition.

Lemma 4 Let (X1, Y1), . . . , (Xn, Yn) be a sample of i.i.d. random vectors, and assume (G), (F)
and (K) hold. For all x ∈ Rq where g(x) > 0, we have that if hn → 0, ωn → ∞ for n → ∞,
with nhqnF̄ (ωn;x)→∞, nhq+2

n F̄ (ωn;x)→ 0, and nhqnF̄ (ωn;x)Φ2(ωn, hn;x)→ 0 then√
nhqnF̄ (ωn;x)g(x)

[
ˆ̄F (ωn;x)

F̄ (ωn;x)
− 1

]
D→ N(0, ‖K‖22).
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For the proof of Lemma 4 we refer to the supporting information.

Proof of Theorem 1
First we consider the estimator θ̂

(1)
n (x; t,K1,K2) assuming that F̄ (ωn;x) is known, and

introduce

θ̃(1)
n (x; t,K1,K2) :=

(
(− ln F̄ (ωn;x))tT

(t)
n (x,K1)

Γ(t+ 1)T
(0)
n (x,K2)

)1/t

.

Write

rn

(
(− ln F̄ (ωn;x))tT

(t)
n (x,K1)

Γ(t+ 1)T
(0)
n (x,K2)

− θt(x)

)

=
F̄ (ωn;x)g(x)

T
(0)
n (x,K2)

{
rn

[
(− ln F̄ (ωn;x))tT

(t)
n (x,K1)

Γ(t+ 1)F̄ (ωn;x)g(x)
− E

(
(− ln F̄ (ωn;x))tT

(t)
n (x,K1)

Γ(t+ 1)F̄ (ωn;x)g(x)

)]

−θt(x)rn

[
T

(0)
n (x,K2)

F̄ (ωn;x)g(x)
− E

(
T

(0)
n (x,K2)

F̄ (ωn;x)g(x)

)]

+rn

[
E((− ln F̄ (ωn;x))tT

(t)
n (x,K1))− θt(x)Γ(t+ 1)E(T

(0)
n (x,K2))

Γ(t+ 1)F̄ (ωn;x)g(x)

]}

=:
F̄ (ωn;x)g(x)

T
(0)
n (x,K2)

{I3 + I4 + I5} .

From Lemma 3, we have

I3 + I4
D→ N

(
0,

θ2t(x)

Γ2(t+ 1)

[
Γ(2t+ 1)‖K1‖22 + Γ2(t+ 1)‖K2‖22 − 2Γ2(t+ 1)‖K1K2‖1

])
.

Concerning I5, by using Lemmas 1 and 2

I5 = rn

{
b(− ln F̄ (ωn;x);x)tθt−1(x)(1 + o(1)) +O

(
1

(− ln F̄ (ωn;x))1−ε

)
+O(hn) +O(Φ(ωn, hn;x))} ,

and hence under our assumptions, I5 → λ
√
g(x) tθt−1(x).

Further, from Lemma 3 we have that T
(0)
n (x,K2)/(F̄ (ωn;x)g(x)) = 1 + oP(1).

Combined, the above gives that

rn

(
(− ln F̄ (ωn;x))tT

(t)
n (x,K1)

Γ(t+ 1)T
(0)
n (x,K2)

− θt(x)

)
D→ N

(
λ
√
g(x) tθt−1(x) ,

θ2t(x)

Γ2(t+ 1)

[
Γ(2t+ 1)‖K1‖22 + Γ2(t+ 1)‖K2‖22 − 2Γ2(t+ 1)‖K1K2‖1

])
.
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A straightforward application of the δ−method yields

rn(θ̃(1)
n (x; t,K1,K2)− θ(x))

D→ N
(
λ
√
g(x),

θ2(x)

t2Γ2(t+ 1)

[
Γ(2t+ 1)‖K1‖22 + Γ2(t+ 1)‖K2‖22 − 2Γ2(t+ 1)‖K1K2‖1

])
.

Now consider θ̂
(1)
n (x; t,K1,K2):

rn(θ̂(1)
n (x; t,K1,K2)− θ(x)) = rn(θ̃(1)

n (x; t,K1,K2)− θ(x))

+rn

(
− ln

ˆ̄F (ωn;x)

F̄ (ωn;x)

)(
T

(t)
n (x,K1)

Γ(t+ 1)T
(0)
n (x,K2)

)1/t

.

Using Lemma 4 we have

rn

(
− ln

ˆ̄F (ωn;x)

F̄ (ωn;x)

)
= OP(1),

and by Lemmas 1, 2, and 3(
T

(t)
n (x,K1)

Γ(t+ 1)T
(0)
n (x,K2)

)1/t

=
θ(x)

(− ln F̄ (ωn;x))
(1 + oP(1)).

Hence

rn(θ̂(1)
n (x; t,K1,K2)− θ(x)) = rn(θ̃(1)

n (x; t,K1,K2)− θ(x)) +OP

(
1

(− ln F̄ (ωn;x))

)
,

from which the result follows. tu

Proof of Theorem 2

The proof of this theorem follows arguments similar to those used in the proof of Theorem
1, and is therefore given in the supporting information.

Proof of Theorem 3

The proof of the theorem is inspired by the approach taken by Wretman (1978) in the
univariate i.i.d. case. Let r̃n := (− lnαn)

√
nhqnαng(x)/Q(1−αn;x) and r̆n := θ(x)

√
nhqnαng(x).

By straightforward inversion we obtain that

P(r̃n(Q̂(1− αn;x)−Q(1− αn;x)) ≤ z) =

P

(
r̆n ln

ˆ̄F (Q(1− αn;x) + z/r̃n;x)

F̄ (Q(1− αn;x) + z/r̃n;x)
≤ r̆n ln

F̄ (Q(1− αn;x);x)

F̄ (Q(1− αn;x) + z/r̃n;x)

)
.
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Now let

Zn := r̆n ln
ˆ̄F (Q(1− αn;x) + z/r̃n;x)

F̄ (Q(1− αn;x) + z/r̃n;x)
and zn := r̆n ln

F̄ (Q(1− αn;x);x)

F̄ (Q(1− αn;x) + z/r̃n;x)
.

Concerning zn we have

zn = r̆nV
′
(
Q(1− αn;x) + κn

z

r̃n
;x

)
z

r̃n

with κn ∈ (0, 1), where the last step follows from the mean value theorem. Let Q̃(1− αn;x) :=
Q(1 − αn;x) + κnz/r̃n. Note that Q̃(1 − αn;x) = Q(1 − αn;x)(1 + o(1)) → ∞ if αn → 0, and
hence, using the assumption that V is a normalized regularly varying function, we have

Q̃(1− αn;x)V ′(Q̃(1− αn;x);x)

V (Q̃(1− αn;x);x)
→ 1

θ(x)
(12)

for αn → 0. Thus

zn = r̆n
1

θ(x)

V (Q̃(1− αn;x);x)

Q̃(1− αn;x)

z

r̃n
(1 + o(1)) = z(1 + o(1)).

Concerning the random term we have that

Zn =
√

∆nθ(x)
√
nhqnF̄ (Q(1− αn;x) + z/r̃n;x)g(x) ln

ˆ̄F (Q(1− αn;x) + z/r̃n;x)

F̄ (Q(1− αn;x) + z/r̃n;x)

where

∆n :=
F̄ (Q(1− αn;x);x)

F̄ (Q(1− αn;x) + z/r̃n;x)
.

Again using (12) and by the definition of r̃n, one obtains that ∆n → 1 as αn → 0. Hence by
Lemma 4 we have that

Zn
D→ N(0, θ2(x)‖K‖22). (13)

Denote by Gn the distribution function of Zn and by G that of the limiting distribution in (13).
Because of the continuity of G we have that the convergence of Gn to G is uniform (see e.g.
Lemma 2.11 in van der Vaart, 1998, p 12), and hence limn→∞Gn(zn) = G(z). This completes
the proof of Theorem 3. tu

Proof of Theorem 4

By straightforward rearrangements we obtain√
nhqnαng(x)

ln τn
ln
Q̂W (1− βn;x)

Q(1− βn;x)
=

√
nhqnαng(x)(θ̂(x)− θ(x))

+

√
nhqnαng(x)

ln τn
ln
Q̂(1− αn;x)

Q(1− αn;x)

+

√
nhqnαng(x)

ln τn
[lnQ(1− αn;x)− lnQ(1− βn;x) + θ(x) ln τn]

=: I6 + I7 + I8.
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Under the assumptions of the theorem√
nhqnαng(x)(θ̂(x)− θ(x))

D→ N(0, V 2(x)).

For I7 we use Theorem 3 to obtain

I7 =
(− lnαn)

√
nhqnαng(x)

(− lnαn) ln τn
ln
Q̂(1− αn;x)

Q(1− αn;x)
= OP

(
1

(− lnαn)

)
.

Finally, by using condition (R), the term I8 can be written as

I8 = −
√
nhqnαng(x)b(− lnαn;x)

τ
ρ(x)
n − 1

ρ(x) ln τn
(1 + o(1))→ 0. tu
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Strict Weibull distribution

t
θ̂
(1)
n (x; t,K,K) Q̂

(1)
W (1− 1/1200;x) Q̂

(1)
W (1− 1/2000;x) Q̂

(1)
W (1− 1/4000;x)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
0.2 0.041 0.102 0.110 0.237 0.120 0.259 0.132 0.287
0.4 0.046 0.102 0.120 0.239 0.130 0.261 0.143 0.289
0.6 0.053 0.105 0.130 0.243 0.141 0.265 0.156 0.294
0.8 0.059 0.108 0.139 0.249 0.152 0.271 0.168 0.301
1.0 0.065 0.111 0.150 0.255 0.163 0.278 0.181 0.309

Extended Weibull distribution

t
θ̂
(1)
n (x; t,K,K) Q̂

(1)
W (1− 1/1200;x) Q̂

(1)
W (1− 1/2000;x) Q̂

(1)
W (1− 1/4000;x)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
0.2 0.041 0.101 0.113 0.231 0.124 0.253 0.139 0.283
0.4 0.049 0.103 0.127 0.237 0.140 0.260 0.157 0.290
0.6 0.057 0.106 0.140 0.243 0.154 0.267 0.174 0.298
0.8 0.063 0.110 0.153 0.250 0.169 0.274 0.190 0.307
1.0 0.069 0.113 0.164 0.257 0.182 0.282 0.205 0.315

Table 1: Setting 1: Performance of θ̂
(1)
n (x; t,K,K), Q̂

(1)
W (1− 1/1200;x), Q̂

(1)
W (1− 1/2000;x) and

Q̂
(1)
W (1− 1/4000;x). The results are averaged over 500 Monte Carlo simulations, with n = 1000.

The numbers in bold indicate the value of t with smallest bias, respectively RMSE.
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Strict Weibull distribution

t
θ̂
(1)
n (x; t,K,K) Q̂

(1)
W (1− 1/1200;x) Q̂

(1)
W (1− 1/2000;x) Q̂

(1)
W (1− 1/4000;x)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
0.2 0.040 0.095 0.094 0.208 0.103 0.228 0.113 0.254
0.4 0.047 0.097 0.106 0.208 0.115 0.228 0.128 0.254
0.6 0.053 0.099 0.116 0.211 0.127 0.231 0.142 0.257
0.8 0.060 0.103 0.127 0.215 0.139 0.235 0.155 0.262
1.0 0.066 0.107 0.136 0.220 0.150 0.241 0.167 0.269

Extended Weibull distribution

t
θ̂
(1)
n (x; t,K,K) Q̂

(1)
W (1− 1/1200;x) Q̂

(1)
W (1− 1/2000;x) Q̂

(1)
W (1− 1/4000;x)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
0.2 0.037 0.094 0.095 0.201 0.105 0.220 0.118 0.247
0.4 0.045 0.096 0.108 0.203 0.120 0.224 0.136 0.251
0.6 0.052 0.099 0.120 0.208 0.134 0.228 0.151 0.256
0.8 0.059 0.102 0.132 0.213 0.146 0.235 0.165 0.263
1.0 0.065 0.106 0.142 0.219 0.157 0.241 0.178 0.271

Table 2: Setting 2: Performance of θ̂
(1)
n (x; t,K,K), Q̂

(1)
W (1− 1/1200;x), Q̂

(1)
W (1− 1/2000;x) and

Q̂
(1)
W (1− 1/4000;x). The results are averaged over 500 Monte Carlo simulations, with n = 1000.

The numbers in bold indicate the value of t with smallest bias, respectively RMSE.

q̃RP,1
n (1/1200|x) q̃RP,1

n (1/2000|x) q̃RP,1
n (1/4000|x)

Bias RMSE Bias RMSE Bias RMSE

Setting 1
Strict Weibull 0.207 0.327 0.249 0.373 0.309 0.437
Extended Weibull 0.161 0.299 0.192 0.342 0.237 0.400

Setting 2
Strict Weibull 0.197 0.288 0.240 0.332 0.302 0.393
Extended Weibull 0.145 0.257 0.175 0.297 0.218 0.352

Table 3: Performance of q̃RP,1n (1/1200|x), q̃RP,1n (1/2000|x) and q̃RP,1n (1/4000|x) with J = 4 in
Setting 1 and Setting 2. The results are averaged over 500 Monte Carlo simulations, with
n = 1000.
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Figure 1: Sea storm data: (a) scatterplot of wave height (HmO) versus still water level
(SWL), (b) Weibull quantile plot of the HmO observations with 0.5 ≤ SWL ≤ 0.7, (c)

θ̂
(1)
n (SWL; 0.2,K,K) as a function of SWL (the solid horizontal reference line represents the es-

timate obtained in a univariate analysis ignoring SWL, and the dashed horizontal reference lines
represent a univariate 95% bootstrap interval), (d) univariate Weibull-tail coefficient estimate

for HmO as a function of k, (e) Q̂
(1)
W (1− 1/1200;SWL) (solid line) and Q̂

(1)
W (1− 1/4000;SWL)

(dotted line) versus SWL and (f) Daouia et al. (2013) estimate q̃RP,1n (1/1200|SWL) (solid line)
and q̃RP,1n (1/4000|SWL) (dotted line) with J = 4 versus SWL.
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