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Abstract. We introduce a nonparametric regression estimator for a tail heaviness parameter
in an integrated conditional Pareto-Weibull-type model. The estimator is based on local log ex-
cesses over a high random threshold. Asymptotic properties are derived under proper regularity

conditions.
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1 Introduction

In the recent years, a lot of attention in extreme value theory has been devoted to situations
where the variable of interest Y is observed together with a random covariate X. Goegebeur et
al. (2014) introduced an estimator for the conditional extreme value index y(z) when vy(x) > 0,
while de Wet et al. (2015) introduced an estimator for the conditional Weibull-tail coefficient.
In both of these cases, a weighted average of the log-excesses over a threshold is used, where
the threshold is considered to be non-random. The aim of the present paper is to construct

an estimator that can be used for both conditional Weibull-tail distributions and Pareto-type
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distributions. To this end, we use a two parameter family of distributions, which contain both
the Pareto-type distributions and the Weibull-tail distributions. The estimator is based on a
random threshold, as was also done in Stupfler (2013), who introduced an estimator for the

conditional extreme value index ~(z) with v(z) € R.

Let F(y;x) := P(Y < y|X = z), the conditional response distribution function, and F(.;z) :=
1— F(;x). Assume

F(y;z) = exp (—Df(z) (In H (y;x))) : (1)
where

e y > y*(x) with y*(x) > 0,

e D.py(y) = [/ u™®=1du, with 7(z) € [0, 1],

e H is an increasing function that satisfies H (t;2) := inf{y : H(y;z) > t} = t/@0(t; ),

where 6(z) > 0, and / is a slowly varying function at infinity, i.e. ZZ((/\y yf)) —lasy — o0

for all A > 0.

As noted in Gardes et al. (2011), this model includes Weibull-tail distributions with Weibull-tail
coefficient 6(z) if 7(xz) = 0, and Pareto-type tails with extreme value index 0(x) if 7(x) = 1,
while 7(z) € (0,1) is an intermediate class of distributions. In the following, we let (X;,Y;),
i =1,...,n, be independent copies of the random vector (X,Y) € R? xR, with ¢ > 1, where the
conditional distribution of Y given X = z satisfies (1). Furthermore, let 2 € R? be arbitrary and
denote by B(z,h), the ball with center x and radius h, i.e. B(x,h) := {z € R?:d(z,z) < h},
with d(z, z) being the distance between = and z. The number of observations in the ball is
given by Ny, o5 := > 0y U¢x,eB(z,n)}, Where 1y is the indicator function, and denote by n, the

expected number of observations in B(x,h), i.e. ny :=nlP (X € B(x,h)).

Conditional on N, », = p, p > 1, we introduce Z;, j = 1,...,p, as the response variables for

which the covariate X; is in the ball B(x,h), and denote by Z;, < ... < Z,, the associated



order statistics. In this setting we define our estimator of (z) as

ka

1
L LSz iy -z
K (z) (h’l E) T =1

~ 1
O(ky;x) :=

with
oy (1) = /0 (D oy (4 1) — Dy (8)) exp(—u)du,

and assuming that k, € {1,...,p — 1}. This estimator is an adaptation of the estimator pro-
posed by Gardes et al. (2011) to the regression context. It consists mainly in averaging the
log-spacings between the upper order statistics of the response variables for which the covariates
are in the ball centered at x.

In the following, we will let Up(¢t;x) and U(t; ) be the tail quantile functions corresponding
to the conditional distribution function Fy(y;z) := P(Y < y|X € B(z,h)) and F(y;x), re-
spectively, i.e. Up(:;2) := (1/Fp(;2)) and U(.;2) := (1/F(.;x))", where the superscript <
denotes the generalised inverse as introduced above. In order to control the difference between
Un(t;z) and U(t;x), we define w(u, v,z h) := sup.cp, ) |log Un(z; ) — log U(2;2)|, with u < v.

The asymptotic properties of §(k,;x) will be examined under the following second order condi-

tion.

Assumption A(p(z)) There exist p(x) < 0 and b(y;x) — 0 for y — oo such that

(Ays)
In m = b(y; 2) D2y (A (1 + (1)),

where o(1) is uniform on X\ € [1,00).

Note that this assumption immediately implies that the function |b(y;x)| is regularly varying

with index p(x).

2 Asymptotic properties

In this section we examine the asymptotic properties of our estimator. We start by establishing

~

the consistency of 6(ky; ).



Theorem 1 Assume that F(.;x) satisfies (1) and that A(p(x)) holds. If ny — 0o, ky — 0o and

% — 0 in such a way that for some § > 0,

then

~

O(ky; ) — 0(x).

Proof: Let I, :=NnNJ[(1— n;1/4)nz, (1 —|—n;1/4)nx]. According to Lemma 1 in Stupfler (2013),

one has that P(N,, ;4 € I;) = 1 as n, — oco. For any ¢ > 0, define the event
S(t;z) = {‘5(/%;95) - 9@:)‘ > t}.
Note that after applying the law of total probability one obtains the inequality
P(S(t;2)) < sup P (St )| Nnan = p) + P(Nnap ¢ Lo).
We have thus to show that sup,c; P (S(t;2)|Nyen = p) — 0.
To this aim, let T;,% = 1,...,p, be unit Pareto random variables, with 77, < ... < T},
the associated order statistics. Given N, ;.5 = p > 1, the distribution of the random vector

(Z1,...,Zp), is the same as that of the random vector (U, (11;),...,Un (Tp;x)); see Lemma 2
in Stupfler (2013). Thus, denoting

ke
é(k‘x, 1‘) = ! i [ln Uh (Tp—i+1,p§ x) —1In Uh (Tpsz,p; .%')] y
Hr(z) In %) ki i=1
~ 1 1
O(ky;z) = ———F——<7= ) U (Tpiv1p;z) = U (Tpk, p; )],
Hr(z) In %) ki i=1
and
1 e
Ry(x) := T Z U (Tp—it1p;%) = InUp (Tp—py pi @) — (U (Tp—i1p;7) —InU (T, pi 2))]
Hr(z) (1H E) T =1
we have

P(S(t:2) [ Nue =p) = P (|0keiz) = 0(2)| > t) <P ([80ks2) = 0@)| > §) +P(IRy(a) > 3) . (2)



The two probabilities on the right-hand side of (2) are now studied separately. Concerning the

first one, note that, with T;*(p) := %, 1=1,..., kg,

p—kz,p
~ 1 1 o
9(]{717 ZL‘) = 9(1‘)7? Z [DT(JJ) (ln Tp—kz,p + In T’z* (p)) - DT(:C) (111 Tp—kz,p)]
fir(z) (hl %) 2 =1

o (exp (Dry T, + T} (9))) 5 2)

+; 1 Z In
oty () Re S E{exp (Drey T ) 53)

=t 01 (ky; @) + Oa(ka; ).

For the sequel, it is important to keep in mind that (T ;. (p),i =1,...,kz) 2 (Thkeys s Thp ey )

independently of T}, ,. Application of a Taylor series expansion to gl(kz; x) gives

(@)-1
S T ()T
01(kz; ) 0(x) (111,%)7—(1)71 o (ln ’%) = ;mTz (p)

k
0 -1 1 &= _ T(x)—2
+ (;) ~ 2 (0Tt %) (TP )
ety () Ko 5

=: gll(kx; x) + 512(7%; x)

where InTj(p) is a random value between 0 and In T7(p). The cases 7(x) = 1 and 7(x) # 1
can now be studied separately. If 7(z) = 1, we have that 611 (ky; ) = H(x)é Zf’il InT}(p) and

512(]{31;{[}) =0, and thus for any ¢ > 0

k
- 1 &=
sup P ()01(14:33;1:) - 9(.7))‘ > t) = supP||0(x)— ZlnTi*(p) —0(x)| >t
pel pel kz X
z x i=1
1
= supP ( 0(x)— ZlnTkIle,kI —0(x)| > t>
pels he 5
1 &
= P(G(az)kx;lnﬂ—ﬂx) >t>
— 0,

by the law of large numbers. Otherwise, if 7(x) < 1, by combining Lemma 6 in Stupfler (2013)

with our Lemmas 1 and 3, we deduce that

sup P (’511(1%;@ — 9(3:)‘ > t) — 0,
pEl;



while concerning 512(/%; x),

0(x) (InT_p, )" 7" (hl%)f(x)fl 1 &
e I Y 2 (T ().

2 <ln ﬁ)T(z)_l Hr(z) (ln %) ki i=1

Using again the law of large numbers combining with the convergence sup,,cy, P ((ln Ty—k, ’p)_l > t) —

0 and our Lemma 3, we deduce that
sup P ()512(k17$)) > t) — 0.
pEl

This leads also for 7(z) < 1 to

sup P (‘gl(kx,x) - 9(56)‘ > t) — 0. (3)

pEly
Concerning now 65 (ky; z), we have to use assumption A(p(z)) which ensures that
1

pirtay (I )

] i i In 14 (exp (DT(:L") (ln Tp*kmp +In ,Tz* (p)) - DT(x) (hl TP*’%J’)) €xp (DT(:E) (h’l Tp*kz,p)) ; IL’)
kg
=1

€ (exp (Dr(z) (0 Ty, p)) 1 7)

gg(k}x; x) =

:b (exp (DT(x) (In Tp_ksz)) ;ZL’)
prto) (In )

K
. l:z > Dy (xp (D) (I (T, pT5(p))) = Doy (10 (Tpote, )))) (1 + 65)
1=1

where 9, 0 uniformly in 4 and p. An application of the mean value theorem, shows that

D) (exp (Dy(z) (0 (Tp—t, p 15 (p))) = Dr(zy (0 (Tpk, »))))

~ p(x) ~ T(x)—1 .
= |exp (D Ti(p) + Ty k) = Doy Ty, )| (WTip) + Ty p) T (),
where InTj(p) is a random value between 0 and In T7(p). Since

~ p(x)
|:6Xp (DT(@ (lnﬂ(p) +In Tp—km ,p) - DT(ac) (ln Tp—l%,p))} < 1,
it follows that
7(z)—1
~ nT,_ T(z)—1 In % 1 ke .
‘92(kx; ZL’)’ < (1 + 6n) ( £ sz)-zx)—l ( ) » b (exp (D’T(CC) (ln Tp—kmp)) ;.%') A Z lnTz (p) .
(m z ) Hor(a) <1n z?) * =1



Clearly,

sup P (|(14d,) — 1| >t) — 0
pEl,

and

squ P (|b (exp (Dr(@y In Ty, ) ;x)| >t) — 0,
PEl

(observe that b(exp(D,()(Iny));z) is regularly varying at infinity, and apply Lemma 6 of
Stupfler, 2013), from which we deduce that

SSEP (‘gg(kr,x)’ > t) —0

according to our Lemma 3. Finally, coming back to R,(x), we have

QUJ(Tp—kw,pa Tpp,, h) Hr () (1n %) '
o (02) o (0 2)

Since w(u,v,x,h) is a decreasing function in w and an increasing function in v, it is clear that

[ Ry(2)| <

(4)

for all ¢t > 0,
2w (ufﬁ, nlto x h)
Hor(a) (hl )

By considering the complementary event, we have

z 1+6
2%w(T. T h Qw(”ix,n ,x,h)
W(Tp—ty ps Tppr @, 1) >t\C (Fo)ks* & >t U {Tp_kz,p < 1n3:5]g} U {Tp,p > n31&+5} :

Tk ps Tpps T, h)
Hor(a) (hl %)

Ng 146 2w(
<t nN<T,_ > ﬂ{T < }C
> { p—kep Z (1+5)kx} pp X TNy =

Taking n, sufficiently large, under the assumption of Theorem 1, we have

2w(T,— T, Jh
sup P w( p—kz,p> Lpps T ) >t| <supP <Tpk1’p < 1n§k> +sup P (prp > niﬂ+6)
pels Hor () (ln %) pely (1+0)ks pels

— 0,

by Lemma 6 in Stupfler (2013) and using the properties of the largest order statistic T}, ,. This
ensures then under our Lemma 2 that

sup P (|Rp(x)| > t) — 0.
pelz

Combining the above results, Theorem 1 follows. [

-~

Now we establish the asymptotic normality of (k,;z), when properly normalised.



Theorem 2 Assume that F(.;x) satisfies (1) and that A(p(x)) holds. If ny — 0o, ky — 0o and

% — 0 in such a way that for some § > 0,

Vhs >w<( e nglc+5,ac,h)—>0,

Ny 1 5 k.I,
Hr(z) (ln? * )

€T

and if additionally

and for 7(z) < 1

then

Vi (ki) = 00)) BN (= 5 Ut + My 822)).

Proof: Given N, ,, = p > 1, the distribution of v/k. (¢ (k‘x,m) O(x)) is the same as that of
Vkz(0(ky; ) — 0(x)). Thus according to Lemma 5 in Stupfler (2013), it is sufficient to prove

that the latter has the same distribution as a triangular array of the form
Dy + ¢np

where D,, 3 N ( =) Yr@)=1} T Algr@)<1}s 92(:1;)) and sup,cy, P (|¢np| > t) — 0 for all £ > 0,
as ng; — 00. We can use the same decomposition of é(kx, x) as in the proof of Theorem 1, that is
in terms of 011 (ky; 2), 012(ka; ), 02(ky; @) and R,(x). Expanding further on the term 011 (ke x)

gives

(InT, Mp>“*10“£)ﬂ@_l_

(ln %)T(z)il fir(z) (hl k%)

k
1 T
ell(km,x —9 E lnT +9 k‘i E lnTz
T =1
=: 5111(7%; x) + 5112(7%; ).

The first term 5111(1%; x) can be dealt with directly with the central limit theorem

Vks (élll(km;x) - o(x)) BN (0,02(z)) .



Note that #112(ks;2) = 0 if 7(z) = 1, so we only need to consider the case 7(z) < 1. For

5112(](333; x), we have thus to show that for all ¢ > 0

nT. T(x)—1
sup P | /s <np’fzp> 1
pel, lnp/kz
From the mean value theorem we get
>Q

sup P | /ks ML p—ksp 1
Inp/k,

pEly
T7(2)—2
@ Vs
In[(1 — ng " *Yngy /ky]

>t>—>0.

ln( T p—kap)
lm(zo/ k)

k
In iT,kI >‘>t
<p p P

<supP 1-—
p€ly

Taylor’s theorem gives now
kg
?Tp—kz,p - 1‘

k
sup P ( In <$Tpk®p> ‘ > t) <supP
pel, p pel, 1 — |k

which tends to zero by Lemma 6 in Stupfler (2013), and, with a > 1,

7(x)—2
) — 1>t

Kz t
>t —supIP’(‘ Tp kop — 1‘>>,
p—kep — 1‘ pel P .

h’l(% P*kzvp)

sup P 1—
pel, ( In(p/kz)
InT),_p, T(@)=3 T, x t
< supP m’p—1’> >a —|—supIP)<pz’p—1 >>
pEl, ( ln p/k’ ) pEI, ln(p/kx) 2a
InT, kep _ 1 In Tp—k P t
— SupIP)( TP~ FRa,p ' 1_a7(z)—3> +SupP< 777_1 >
pEIx p/k pely ln(p/k:v) 2a
_>

Concerning now the term 615 (k,; z) (which only needs to be considered in case 7(z) < 1), remark

that

T(x)—1
_ 1 niz (z)—1 (1n & ks
[Viath o] < | %) (e e (8 imten 8) 15 e

Combining again Lemma 6 in Stupfler (2013) with our Lemmas 1 and 3 together with our

assumptions, we infer that

sup P (‘\/Eglz(kx,x)’ > t) — 0.

pEly



For 0y (ky; z), we need also to distinguish between the two cases 7(z) = 1 and 7(z) < 1. We
first consider the case 7(z) = 1, where we use the fact that b(.; z) is regularly varying at infinity

combining with Lemma 6 in Stupfler (2013) and the law of large numbers according to which

1 (T (p)"™ —1 1 T —1 1
sup P | |— ! — >t]| =P |— ¢ — >t] — 0.
pel, ( ko Z} p(z) 1—p(z) ko Z; p(z) 1—p(z)
The convergence
~ A
supIP’( VkzO2(ky; ) — ———| > t> —0
pEIz 1 - p(I)

then follows from our assumptions and our Lemma 3. In the case where 7(x) < 1, using the

same arguments as in the proof of Theorem 1, we have the following decomposition

0o (k; ) =: 01 (k; ) + O (ks ) + O3 (ks ),

where
~ (T, )™ 1R
O21(kp;x) = (146n)b(exp (Dr(py (I Tp_p,p)) ;) : . . ZlnTi (p)
Hr(2) (111 E) T =1
~ b Dz (In T, - Fa
022(]{755; x) = (1 + 571) (eXp ( 7(x) ( n p kmp)) 7.%') ki lnjvz*(p)
Hor () (hl %) T =1
7(x)—1

P[P () N Ti ()40 Ty p) = Do) (0 Ty )] { <1n Tptyp + lnfi(p)) — (In Tp—kx,p)T(x)l}

(InT}g, ,p)T(x)_l

fir(z) (hﬂ ﬁ)

111 1—;* (p) {ep(x) [DT(I)(lnTi(p)+lnTp7km,p)7DT(z)(ln Tpfka;,p)} _ 1} .

523(7%% ) = (1+d,)b (exp (DT(w) (In Tp—kz,p)) §$)

ks
b i=1
Using the regularly varying property of b(.; z), the law of large numbers, our Lemmas 1-3 and our
assumptions, combining with the mean value theorem for 522(1%; x) and 523(/%;&0), we deduce
that

supP()\/Eggl(kx;a:)—)\ >t) — 0,
pEly

supP(‘\/Eggg(kx;x) >t) — 0,

pEly
sup P (‘\/kx ggg(k‘x;l‘) > t) — 0.
pEly

10



For what concerns the remainder term R,(z), using the same arguments as in the proof of

Theorem 1, we get for all ¢ > 0, that

1+0
\/EQW(Tp_kTp,Tpp,x,h \/> (1+5) n ’l"h) > t U {Tp 77/.7;}

fir(z) (hl k) (2) (ln %) ber S 0 o)k,
{Tpp > n1+5}

Taking now n, sufficiently large, this implies by assumption that

2w(T,— T h
sup P T W(Tp—typs Tppr @, 1) St < supIP’( ke < m) T sup P (Tpp > n1+5)
pEly /"LT(:E) (ln Z—:) pel (1 + 5)k pEl,

— 0.

This convergence combined with (4) and Lemma 2 ensures that

sup P (‘\/ERp(x)‘ > t) — 0.

pel,

Combining all these convergences yield our Theorem 2. =

Appendix

In this section we introduce some lemmas which are useful for establishing the main results.

Lemma 1 Assume that n, — oo, k, — oo such that 7% — 0. If 7(z) < 1, then there exist a

constant C > 0, such that

Proof: First note that we have pi-(,)(y) = y™@=1 L R(y), with
~ —1 oo
R(y) = T(‘T)2y‘r(x)2/ (14 g)‘r(x)72u267udu,
0

where £ is a value between 0 and % Hence |§(y)| < y™®)=2_ Consequently

ln 2 T R(ln2 -1 1\ \ !
ET@T()lnki)l ) <1n;;)““(lf>ﬁ(ln,g;> <(ni) (”O<<lni> )) |

11




Since

the result easily follows. m

Lemma 2 Assume that ng — oo, kz — oo such that % — 0. Then

—1
Hr(z) (hl kfz)
uniformly in p € 1.
3 . Hr(z) (ln %)
Proof: We start by rewriting the term ———=¢ —1 as
B () (1n ﬁ)
» » » 7(x)—1 » T(x)—1
P (z) (ln E) Hor (z) <ln E) . (ln E) (ln E) .
=) _q_ v) = n = _
o T(z)—-1 N N
Hor(z) (ln E) (ln %) Hr(z) (hl E) Hr(2) (hl F)
. . 7(z)—1 )
According to Lemma 2 in Gardes et al. (2011), jir(,) (ln Z—i) ~ (ln Z—i) . Thus, using a

Taylor series expansion combining with the fact that uniformly in p € I, In n% — 0, we have

T(x)—1
(ln%) (@) Ly 2\ @1
A | KT | [ — 1 —0 (5)

Por () (hl %) In g

uniformly in p € I;. Moreover, from the proof of Lemma 1, we know that

1GR3 M A g

In —

ka

(ln %)T(I)fl - <ln ]%)T(x)q

uniformly in p € I,. Combining (5) and (6), our Lemma 2 follows.

Lemma 3 Assume that I, is some index set, and, for p € I, let (X,(p))n and (Yn(p))n be

sequences of random variables. If for all e > 0 and some z,y € R,

sup P (| Xn(p) — x| >¢) — 0
pEln

12



and

sup P (|Ya(p) —y| >¢) — 0
pel,

as n — 0o, then

sup P (| Xy (p)Yn(p) — 2yl >¢€) — 0
pE n

as n — oQ.

Proof: Note that for all p € I,,,

1Xa(p)Ya(p) — 7| > €} € {|(Xalp) = 2)| > 1} U {|(Valp) — 9)| > 5 }
U{ly atp) =) > U {lz (atp) = 9)l > -

Lemma 3 then follows using the subadditivity property of a probability measure. [
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