An estimator for the tail index of an integrated conditional Pareto-Weibull-type model

Yuri Goegebeur *
Armelle Guillou ${ }^{\dagger}$
Michael Osmann ${ }^{\ddagger}$

Abstract

We introduce a nonparametric regression estimator for a tail heaviness parameter in an integrated conditional Pareto-Weibull-type model. The estimator is based on local log excesses over a high random threshold. Asymptotic properties are derived under proper regularity conditions.

Key words and phrases: Extremes, local estimation, regression, tail index.

1 Introduction

In the recent years, a lot of attention in extreme value theory has been devoted to situations where the variable of interest Y is observed together with a random covariate X. Goegebeur et al. (2014) introduced an estimator for the conditional extreme value index $\gamma(x)$ when $\gamma(x)>0$, while de Wet et al. (2015) introduced an estimator for the conditional Weibull-tail coefficient. In both of these cases, a weighted average of the log-excesses over a threshold is used, where the threshold is considered to be non-random. The aim of the present paper is to construct an estimator that can be used for both conditional Weibull-tail distributions and Pareto-type

[^0]distributions. To this end, we use a two parameter family of distributions, which contain both the Pareto-type distributions and the Weibull-tail distributions. The estimator is based on a random threshold, as was also done in Stupfler (2013), who introduced an estimator for the conditional extreme value index $\gamma(x)$ with $\gamma(x) \in \mathbb{R}$.

Let $F(y ; x):=\mathbb{P}(Y \leq y \mid X=x)$, the conditional response distribution function, and $\bar{F}(. ; x):=$ $1-F(. ; x)$. Assume

$$
\begin{equation*}
\bar{F}(y ; x)=\exp \left(-D_{\tau(x)}^{\leftarrow}(\ln H(y ; x))\right) \tag{1}
\end{equation*}
$$

where

- $y>y^{*}(x)$ with $y^{*}(x)>0$,
- $D_{\tau(x)}(y)=\int_{1}^{y} u^{\tau(x)-1} d u$, with $\tau(x) \in[0,1]$,
- H is an increasing function that satisfies $H^{\leftarrow}(t ; x):=\inf \{y: H(y ; x) \geq t\}=t^{\theta(x)} \ell(t ; x)$, where $\theta(x)>0$, and ℓ is a slowly varying function at infinity, i.e. $\frac{\ell(\lambda y ; x)}{\ell(y ; x)} \rightarrow 1$ as $y \rightarrow \infty$ for all $\lambda>0$.

As noted in Gardes et al. (2011), this model includes Weibull-tail distributions with Weibull-tail coefficient $\theta(x)$ if $\tau(x)=0$, and Pareto-type tails with extreme value index $\theta(x)$ if $\tau(x)=1$, while $\tau(x) \in(0,1)$ is an intermediate class of distributions. In the following, we let $\left(X_{i}, Y_{i}\right)$, $i=1, \ldots, n$, be independent copies of the random vector $(X, Y) \in \mathbb{R}^{q} \times \mathbb{R}_{+}$with $q \geq 1$, where the conditional distribution of Y given $X=x$ satisfies (1). Furthermore, let $x \in \mathbb{R}^{q}$ be arbitrary and denote by $B(x, h)$, the ball with center x and radius h, i.e. $B(x, h):=\left\{z \in \mathbb{R}^{q}: d(x, z) \leq h\right\}$, with $d(x, z)$ being the distance between x and z. The number of observations in the ball is given by $N_{n, x, h}:=\sum_{i=1}^{n} \mathbb{1}_{\left\{X_{i} \in B(x, h)\right\}}$, where $\mathbb{1}_{\{\cdot\}}$ is the indicator function, and denote by n_{x} the expected number of observations in $B(x, h)$, i.e. $n_{x}:=n \mathbb{P}(X \in B(x, h))$.

Conditional on $N_{n, x, h}=p, p \geq 1$, we introduce $Z_{j}, j=1, \ldots, p$, as the response variables for which the covariate X_{j} is in the ball $B(x, h)$, and denote by $Z_{1, p} \leq \ldots \leq Z_{p, p}$ the associated
order statistics. In this setting we define our estimator of $\theta(x)$ as

$$
\widehat{\theta}\left(k_{x} ; x\right):=\frac{1}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} \frac{1}{k_{x}} \sum_{i=1}^{k_{x}}\left[\ln Z_{p-i+1, p}-\ln Z_{p-k_{x}, p}\right]
$$

with

$$
\mu_{\tau(x)}(t):=\int_{0}^{\infty}\left(D_{\tau(x)}(u+t)-D_{\tau(x)}(t)\right) \exp (-u) d u
$$

and assuming that $k_{x} \in\{1, \ldots, p-1\}$. This estimator is an adaptation of the estimator proposed by Gardes et al. (2011) to the regression context. It consists mainly in averaging the log-spacings between the upper order statistics of the response variables for which the covariates are in the ball centered at x.

In the following, we will let $U_{h}(t ; x)$ and $U(t ; x)$ be the tail quantile functions corresponding to the conditional distribution function $F_{h}(y ; x):=\mathbb{P}(Y \leq y \mid X \in B(x, h))$ and $F(y ; x)$, respectively, i.e. $U_{h}(. ; x):=\left(1 / \bar{F}_{h}(. ; x)\right)^{\leftarrow}$ and $U(. ; x):=(1 / \bar{F}(. ; x))^{\leftarrow}$, where the superscript \leftarrow denotes the generalised inverse as introduced above. In order to control the difference between $U_{h}(t ; x)$ and $U(t ; x)$, we define $\omega(u, v, x, h):=\sup _{z \in[u, v]}\left|\log U_{h}(z ; x)-\log U(z ; x)\right|$, with $u \leq v$. The asymptotic properties of $\widehat{\theta}\left(k_{x} ; x\right)$ will be examined under the following second order condition.

Assumption $A(\rho(x))$ There exist $\rho(x)<0$ and $b(y ; x) \rightarrow 0$ for $y \rightarrow \infty$ such that

$$
\ln \frac{\ell(\lambda y ; x)}{\ell(y ; x)}=b(y ; x) D_{\rho(x)}(\lambda)(1+o(1)),
$$

where $o(1)$ is uniform on $\lambda \in[1, \infty)$.

Note that this assumption immediately implies that the function $|b(y ; x)|$ is regularly varying with index $\rho(x)$.

2 Asymptotic properties

In this section we examine the asymptotic properties of our estimator. We start by establishing the consistency of $\widehat{\theta}\left(k_{x} ; x\right)$.

Theorem 1 Assume that $\bar{F}(. ; x)$ satisfies (1) and that $A(\rho(x))$ holds. If $n_{x} \rightarrow \infty, k_{x} \rightarrow \infty$ and $\frac{k_{x}}{n_{x}} \rightarrow 0$ in such a way that for some $\delta>0$,

$$
\frac{1}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)} \omega\left(\frac{n_{x}}{(1+\delta) k_{x}}, n_{x}^{1+\delta}, x, h\right) \longrightarrow 0,
$$

then

$$
\widehat{\theta}\left(k_{x} ; x\right) \xrightarrow{\mathbb{P}} \theta(x) .
$$

Proof: Let $I_{x}:=\mathbb{N} \cap\left[\left(1-n_{x}^{-1 / 4}\right) n_{x},\left(1+n_{x}^{-1 / 4}\right) n_{x}\right]$. According to Lemma 1 in Stupfler (2013), one has that $\mathbb{P}\left(N_{n, x, h} \in I_{x}\right) \rightarrow 1$ as $n_{x} \rightarrow \infty$. For any $t>0$, define the event

$$
S(t ; x):=\left\{\left|\widehat{\theta}\left(k_{x} ; x\right)-\theta(x)\right|>t\right\} .
$$

Note that after applying the law of total probability one obtains the inequality

$$
\mathbb{P}(S(t ; x)) \leq \sup _{p \in I_{x}} \mathbb{P}\left(S(t ; x) \mid N_{n, x, h}=p\right)+\mathbb{P}\left(N_{n, x, h} \notin I_{x}\right) .
$$

We have thus to show that $\sup _{p \in I_{x}} \mathbb{P}\left(S(t ; x) \mid N_{n, x, h}=p\right) \rightarrow 0$.

To this aim, let $T_{i}, i=1, \ldots, p$, be unit Pareto random variables, with $T_{1, p} \leq \ldots \leq T_{p, p}$ the associated order statistics. Given $N_{n, x, h}=p \geq 1$, the distribution of the random vector $\left(Z_{1}, \ldots, Z_{p}\right)$, is the same as that of the random vector $\left(U_{h}\left(T_{1} ; x\right), \ldots, U_{h}\left(T_{p} ; x\right)\right)$; see Lemma 2 in Stupfler (2013). Thus, denoting

$$
\begin{aligned}
\breve{\theta}\left(k_{x} ; x\right) & :=\frac{1}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} \frac{1}{k_{x}} \sum_{i=1}^{k_{x}}\left[\ln U_{h}\left(T_{p-i+1, p} ; x\right)-\ln U_{h}\left(T_{p-k_{x}, p} ; x\right)\right], \\
\widetilde{\theta}\left(k_{x} ; x\right) & :=\frac{1}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} \frac{1}{k_{x}} \sum_{i=1}^{k_{x}}\left[\ln U\left(T_{p-i+1, p} ; x\right)-\ln U\left(T_{p-k_{x}, p} ; x\right)\right],
\end{aligned}
$$

and
$R_{p}(x):=\frac{1}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} \frac{1}{k_{x}} \sum_{i=1}^{k_{x}}\left[\ln U_{h}\left(T_{p-i+1, p} ; x\right)-\ln U_{h}\left(T_{p-k_{x}, p} ; x\right)-\left(\ln U\left(T_{p-i+1, p} ; x\right)-\ln U\left(T_{p-k_{x}, p} ; x\right)\right)\right]$,
we have
$\mathbb{P}\left(S(t ; x) \mid N_{n, x, h}=p\right)=\mathbb{P}\left(\left|\breve{\theta}\left(k_{x} ; x\right)-\theta(x)\right|>t\right) \leq \mathbb{P}\left(\left|\widetilde{\theta}\left(k_{x} ; x\right)-\theta(x)\right|>\frac{t}{2}\right)+\mathbb{P}\left(\left|R_{p}(x)\right|>\frac{t}{2}\right)$.

The two probabilities on the right-hand side of (2) are now studied separately. Concerning the first one, note that, with $T_{i}^{*}(p):=\frac{T_{p-i+1, p}}{T_{p-k_{x}}, p}, i=1, \ldots, k_{x}$,

$$
\begin{aligned}
\widetilde{\theta}\left(k_{x} ; x\right)= & \theta(x) \frac{1}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} \frac{1}{k_{x}} \sum_{i=1}^{k_{x}}\left[D_{\tau(x)}\left(\ln T_{p-k_{x}, p}+\ln T_{i}^{*}(p)\right)-D_{\tau(x)}\left(\ln T_{p-k_{x}, p}\right)\right] \\
& +\frac{1}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} \frac{1}{k_{x}} \sum_{i=1}^{k_{x}} \ln \frac{\ell\left(\exp \left(D_{\tau(x)}\left(\ln T_{p-k_{x}, p}+\ln T_{i}^{*}(p)\right)\right) ; x\right)}{\ell\left(\exp \left(D_{\tau(x)}\left(\ln T_{p-k_{x}, p}\right)\right) ; x\right)} \\
= & \widetilde{\theta}_{1}\left(k_{x} ; x\right)+\widetilde{\theta}_{2}\left(k_{x} ; x\right) .
\end{aligned}
$$

For the sequel, it is important to keep in mind that $\left(T_{k_{x}-i+1}^{*}(p), i=1, \ldots, k_{x}\right) \stackrel{D}{=}\left(T_{1, k_{x}}, \ldots, T_{k_{x}, k_{x}}\right)$, independently of $T_{p-k_{x}, p}$. Application of a Taylor series expansion to $\widetilde{\theta}_{1}\left(k_{x} ; x\right)$ gives

$$
\begin{aligned}
\widetilde{\theta}_{1}\left(k_{x} ; x\right)= & \theta(x) \frac{\left(\ln T_{p-k_{x}, p}\right)^{\tau(x)-1}}{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}} \frac{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} \frac{1}{k_{x}} \sum_{i=1}^{k_{x}} \ln T_{i}^{*}(p) \\
& +\frac{\theta(x)}{2} \frac{\tau(x)-1}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} \frac{1}{k_{x}} \sum_{i=1}^{k_{x}}\left(\ln T_{p-k_{x}, p}+\ln \widetilde{T}_{i}(p)\right)^{\tau(x)-2}\left(\ln T_{i}^{*}(p)\right)^{2} \\
= & \widetilde{\theta}_{11}\left(k_{x} ; x\right)+\widetilde{\theta}_{12}\left(k_{x} ; x\right)
\end{aligned}
$$

where $\ln \widetilde{T}_{i}(p)$ is a random value between 0 and $\ln T_{i}^{*}(p)$. The cases $\tau(x)=1$ and $\tau(x) \neq 1$ can now be studied separately. If $\tau(x)=1$, we have that $\tilde{\theta}_{11}\left(k_{x} ; x\right)=\theta(x) \frac{1}{k_{x}} \sum_{i=1}^{k_{x}} \ln T_{i}^{*}(p)$ and $\widetilde{\theta}_{12}\left(k_{x} ; x\right)=0$, and thus for any $t>0$

$$
\begin{aligned}
\sup _{p \in I_{x}} \mathbb{P}\left(\left|\widetilde{\theta}_{1}\left(k_{x} ; x\right)-\theta(x)\right|>t\right) & =\sup _{p \in I_{x}} \mathbb{P}\left(\left|\theta(x) \frac{1}{k_{x}} \sum_{i=1}^{k_{x}} \ln T_{i}^{*}(p)-\theta(x)\right|>t\right) \\
& =\sup _{p \in I_{x}} \mathbb{P}\left(\left|\theta(x) \frac{1}{k_{x}} \sum_{i=1}^{k_{x}} \ln T_{k_{x}-i+1, k_{x}}-\theta(x)\right|>t\right) \\
& =\mathbb{P}\left(\left|\theta(x) \frac{1}{k_{x}} \sum_{i=1}^{k_{x}} \ln T_{i}-\theta(x)\right|>t\right) \\
& \longrightarrow 0,
\end{aligned}
$$

by the law of large numbers. Otherwise, if $\tau(x)<1$, by combining Lemma 6 in Stupfler (2013) with our Lemmas 1 and 3, we deduce that

$$
\sup _{p \in I_{x}} \mathbb{P}\left(\left|\widetilde{\theta}_{11}\left(k_{x} ; x\right)-\theta(x)\right|>t\right) \longrightarrow 0,
$$

while concerning $\widetilde{\theta}_{12}\left(k_{x} ; x\right)$,

$$
\left|\widetilde{\theta}_{12}\left(k_{x} ; x\right)\right| \leq \frac{\theta(x)}{2}\left(\ln T_{p-k_{x}, p}\right)^{-1} \frac{\left(\ln T_{p-k_{x}, p}\right)^{\tau(x)-1}}{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}} \frac{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} \frac{1}{k_{x}} \sum_{i=1}^{k_{x}}\left(\ln T_{i}^{*}(p)\right)^{2} .
$$

Using again the law of large numbers combining with the convergence $\sup _{p \in I_{x}} \mathbb{P}\left(\left(\ln T_{p-k_{x}, p}\right)^{-1}>t\right) \rightarrow$ 0 and our Lemma 3, we deduce that

$$
\sup _{p \in I_{x}} \mathbb{P}\left(\left|\widetilde{\theta}_{12}\left(k_{x} ; x\right)\right|>t\right) \longrightarrow 0
$$

This leads also for $\tau(x)<1$ to

$$
\begin{equation*}
\sup _{p \in I_{x}} \mathbb{P}\left(\left|\widetilde{\theta}_{1}\left(k_{x} ; x\right)-\theta(x)\right|>t\right) \longrightarrow 0 \tag{3}
\end{equation*}
$$

Concerning now $\widetilde{\theta}_{2}\left(k_{x} ; x\right)$, we have to use assumption $A(\rho(x))$ which ensures that

$$
\begin{aligned}
\widetilde{\theta}_{2}\left(k_{x} ; x\right)= & \frac{1}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} \\
& \cdot \frac{1}{k_{x}} \sum_{i=1}^{k_{x}} \ln \frac{\ell\left(\exp \left(D_{\tau(x)}\left(\ln T_{p-k_{x}, p}+\ln T_{i}^{*}(p)\right)-D_{\tau(x)}\left(\ln T_{p-k_{x}, p}\right)\right) \exp \left(D_{\tau(x)}\left(\ln T_{p-k_{x}, p}\right)\right) ; x\right)}{\ell\left(\exp \left(D_{\tau(x)}\left(\ln T_{p-k_{x}, p}\right)\right) ; x\right)} \\
= & \frac{b\left(\exp \left(D_{\tau(x)}\left(\ln T_{p-k_{x}, p}\right)\right) ; x\right)}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} \\
& \cdot \frac{1}{k_{x}} \sum_{i=1}^{k_{x}} D_{\rho(x)}\left(\exp \left(D_{\tau(x)}\left(\ln \left(T_{p-k_{x}, p} T_{i}^{*}(p)\right)\right)-D_{\tau(x)}\left(\ln \left(T_{p-k_{x}, p}\right)\right)\right)\right)\left(1+\delta_{n}\right)
\end{aligned}
$$

where $\delta_{n} \xrightarrow{\mathbb{P}} 0$ uniformly in i and p. An application of the mean value theorem, shows that

$$
\begin{aligned}
& D_{\rho(x)}\left(\exp \left(D_{\tau(x)}\left(\ln \left(T_{p-k_{x}, p} T_{i}^{*}(p)\right)\right)-D_{\tau(x)}\left(\ln \left(T_{p-k_{x}, p}\right)\right)\right)\right) \\
& =\left[\exp \left(D_{\tau(x)}\left(\ln \widetilde{T}_{i}(p)+\ln T_{p-k_{x}, p}\right)-D_{\tau(x)}\left(\ln T_{p-k_{x}, p}\right)\right)\right]^{\rho(x)}\left(\ln \widetilde{T}_{i}(p)+\ln T_{p-k_{x}, p}\right)^{\tau(x)-1} \ln T_{i}^{*}(p),
\end{aligned}
$$

where $\ln \widetilde{T}_{i}(p)$ is a random value between 0 and $\ln T_{i}^{*}(p)$. Since

$$
\left[\exp \left(D_{\tau(x)}\left(\ln \widetilde{T}_{i}(p)+\ln T_{p-k_{x}, p}\right)-D_{\tau(x)}\left(\ln T_{p-k_{x}, p}\right)\right)\right]^{\rho(x)} \leq 1
$$

it follows that

$$
\left|\widetilde{\theta}_{2}\left(k_{x} ; x\right)\right| \leq\left|\left(1+\delta_{n}\right) \frac{\left(\ln T_{p-k_{x}, p}\right)^{\tau(x)-1}}{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}} \frac{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} b\left(\exp \left(D_{\tau(x)}\left(\ln T_{p-k_{x}, p}\right)\right) ; x\right) \frac{1}{k_{x}} \sum_{i=1}^{k_{x}} \ln T_{i}^{*}(p)\right| .
$$

Clearly,

$$
\sup _{p \in I_{x}} \mathbb{P}\left(\left|\left(1+\delta_{n}\right)-1\right|>t\right) \longrightarrow 0
$$

and

$$
\sup _{p \in I_{x}} \mathbb{P}\left(\left|b\left(\exp \left(D_{\tau(x)}\left(\ln T_{p-k_{x}, p}\right)\right) ; x\right)\right|>t\right) \longrightarrow 0
$$

(observe that $b\left(\exp \left(D_{\tau(x)}(\ln y)\right) ; x\right)$ is regularly varying at infinity, and apply Lemma 6 of Stupfler, 2013), from which we deduce that

$$
\sup _{p \in I_{x}} \mathbb{P}\left(\left|\widetilde{\theta}_{2}\left(k_{x} ; x\right)\right|>t\right) \longrightarrow 0
$$

according to our Lemma 3. Finally, coming back to $R_{p}(x)$, we have

$$
\begin{equation*}
\left|R_{p}(x)\right| \leq \frac{2 \omega\left(T_{p-k_{x}, p}, T_{p, p}, x, h\right)}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)} \frac{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} \tag{4}
\end{equation*}
$$

Since $\omega(u, v, x, h)$ is a decreasing function in u and an increasing function in v, it is clear that for all $t>0$,

$$
\left\{\left|\frac{2 \omega\left(\frac{n_{x}}{(1+\delta) k_{x}}, n_{x}^{1+\delta}, x, h\right)}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)}\right| \leq t\right\} \cap\left\{T_{p-k_{x}, p} \geq \frac{n_{x}}{(1+\delta) k_{x}}\right\} \cap\left\{T_{p, p} \leq n_{x}^{1+\delta}\right\} \subseteq\left\{\left|\frac{2 \omega\left(T_{p-k_{x}, p}, T_{p, p}, x, h\right)}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)}\right| \leq t\right\}
$$

By considering the complementary event, we have

$$
\left\{\left|\frac{2 \omega\left(T_{p-k_{x}, p}, T_{p, p}, x, h\right)}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)}\right|>t\right\} \subseteq\left\{\left|\frac{2 \omega\left(\frac{n_{x}}{(1+\delta) k_{x}}, n_{x}^{1+\delta}, x, h\right)}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)}\right|>t\right\} \cup\left\{T_{p-k_{x}, p}<\frac{n_{x}}{(1+\delta) k_{x}}\right\} \cup\left\{T_{p, p}>n_{x}^{1+\delta}\right\} .
$$

Taking n_{x} sufficiently large, under the assumption of Theorem 1 , we have

$$
\begin{aligned}
\sup _{p \in I_{x}} \mathbb{P}\left(\left|\frac{2 \omega\left(T_{p-k_{x}, p}, T_{p, p}, x, h\right)}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)}\right|>t\right) & \leq \sup _{p \in I_{x}} \mathbb{P}\left(T_{p-k_{x}, p}<\frac{n_{x}}{(1+\delta) k_{x}}\right)+\sup _{p \in I_{x}} \mathbb{P}\left(T_{p, p}>n_{x}^{1+\delta}\right) \\
& \longrightarrow 0
\end{aligned}
$$

by Lemma 6 in Stupfler (2013) and using the properties of the largest order statistic $T_{p, p}$. This ensures then under our Lemma 2 that

$$
\sup _{p \in I_{x}} \mathbb{P}\left(\left|R_{p}(x)\right|>t\right) \longrightarrow 0
$$

Combining the above results, Theorem 1 follows.
Now we establish the asymptotic normality of $\widehat{\theta}\left(k_{x} ; x\right)$, when properly normalised.

Theorem 2 Assume that $\bar{F}(. ; x)$ satisfies (1) and that $A(\rho(x))$ holds. If $n_{x} \rightarrow \infty, k_{x} \rightarrow \infty$ and $\frac{k_{x}}{n_{x}} \rightarrow 0$ in such a way that for some $\delta>0$,

$$
\frac{\sqrt{k_{x}}}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)} \omega\left(\frac{n_{x}}{(1+\delta) k_{x}}, n_{x}^{1+\delta}, x, h\right) \longrightarrow 0,
$$

and if additionally

$$
\sqrt{k_{x}} b\left(\exp \left(D_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)\right) ; x\right) \longrightarrow \lambda \in \mathbb{R}
$$

and for $\tau(x)<1$

$$
\frac{\sqrt{k_{x}}}{\ln \frac{n_{x}}{k_{x}}} \longrightarrow 0
$$

then

$$
\sqrt{k_{x}}\left(\widehat{\theta}\left(k_{x} ; x\right)-\theta(x)\right) \xrightarrow{D} \mathcal{N}\left(\frac{\lambda}{1-\rho(x)} \mathbb{1}_{\{\tau(x)=1\}}+\lambda \mathbb{1}_{\{\tau(x)<1\}}, \theta^{2}(x)\right) .
$$

Proof: Given $N_{n, x, h}=p \geq 1$, the distribution of $\sqrt{k_{x}}\left(\widehat{\theta}\left(k_{x} ; x\right)-\theta(x)\right)$ is the same as that of $\sqrt{k_{x}}\left(\breve{\theta}\left(k_{x} ; x\right)-\theta(x)\right)$. Thus according to Lemma 5 in Stupfler (2013), it is sufficient to prove that the latter has the same distribution as a triangular array of the form

$$
D_{n}+\phi_{n p}
$$

where $D_{n} \xrightarrow{D} \mathcal{N}\left(\frac{\lambda}{1-\rho(x)} \mathbb{1}_{\{\tau(x)=1\}}+\lambda \mathbb{1}_{\{\tau(x)<1\}}, \theta^{2}(x)\right)$ and $\sup _{p \in I_{x}} \mathbb{P}\left(\left|\phi_{n p}\right|>t\right) \rightarrow 0$ for all $t>0$, as $n_{x} \rightarrow \infty$. We can use the same decomposition of $\breve{\theta}\left(k_{x} ; x\right)$ as in the proof of Theorem 1 , that is in terms of $\widetilde{\theta}_{11}\left(k_{x} ; x\right), \widetilde{\theta}_{12}\left(k_{x} ; x\right), \widetilde{\theta}_{2}\left(k_{x} ; x\right)$ and $R_{p}(x)$. Expanding further on the term $\widetilde{\theta}_{11}\left(k_{x} ; x\right)$ gives

$$
\begin{aligned}
\tilde{\theta}_{11}\left(k_{x} ; x\right) & \stackrel{D}{=} \theta(x) \frac{1}{k_{x}} \sum_{i=1}^{k_{x}} \ln T_{i}+\theta(x)\left[\frac{\left(\ln T_{p-k_{x}, p}\right)^{\tau(x)-1}}{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}} \frac{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)}-1\right] \frac{1}{k_{x}} \sum_{i=1}^{k_{x}} \ln T_{i} \\
& =: \tilde{\theta}_{111}\left(k_{x} ; x\right)+\tilde{\theta}_{112}\left(k_{x} ; x\right) .
\end{aligned}
$$

The first term $\widetilde{\theta}_{111}\left(k_{x} ; x\right)$ can be dealt with directly with the central limit theorem

$$
\sqrt{k_{x}}\left(\widetilde{\theta}_{111}\left(k_{x} ; x\right)-\theta(x)\right) \xrightarrow{D} \mathcal{N}\left(0, \theta^{2}(x)\right) .
$$

Note that $\widetilde{\theta}_{112}\left(k_{x} ; x\right)=0$ if $\tau(x)=1$, so we only need to consider the case $\tau(x)<1$. For $\widetilde{\theta}_{112}\left(k_{x} ; x\right)$, we have thus to show that for all $t>0$

$$
\sup _{p \in I_{x}} \mathbb{P}\left(\sqrt{k_{x}}\left|\left(\frac{\ln T_{p-k_{x}, p}}{\ln p / k_{x}}\right)^{\tau(x)-1}-1\right|>t\right) \longrightarrow 0 .
$$

From the mean value theorem we get

$$
\begin{aligned}
& \sup _{p \in I_{x}} \mathbb{P}\left(\sqrt{k_{x}}\left|\left(\frac{\ln T_{p-k_{x}, p}}{\ln p / k_{x}}\right)^{\tau(x)-1}-1\right|>t\right) \\
& \quad \leq \sup _{p \in I_{x}} \mathbb{P}\left(\left(1-\left|\frac{\ln \left(\frac{k_{x}}{p} T_{p-k_{x}, p}\right)}{\ln \left(p / k_{x}\right)}\right|\right)^{\tau(x)-2} \frac{\sqrt{k_{x}}}{\ln \left[\left(1-n_{x}^{-1 / 4}\right) n_{x} / k_{x}\right]}\left|\ln \left(\frac{k_{x}}{p} T_{p-k_{x}, p}\right)\right|>t\right) .
\end{aligned}
$$

Taylor's theorem gives now

$$
\sup _{p \in I_{x}} \mathbb{P}\left(\left|\ln \left(\frac{k_{x}}{p} T_{p-k_{x}, p}\right)\right|>t\right) \leq \sup _{p \in I_{x}} \mathbb{P}\left(\frac{\left|\frac{k_{x}}{p} T_{p-k_{x}, p}-1\right|}{1-\left|\frac{k_{x}}{p} T_{p-k_{x}, p}-1\right|}>t\right)=\sup _{p \in I_{x}} \mathbb{P}\left(\left|\frac{k_{x}}{p} T_{p-k_{x}, p}-1\right|>\frac{t}{1+t}\right),
$$

which tends to zero by Lemma 6 in Stupfler (2013), and, with $a>1$,

$$
\begin{aligned}
\sup _{p \in I_{x}} \mathbb{P}(& (\\
& \left.\left.\left(1-\left|\frac{\ln \left(\frac{k_{x}}{p} T_{p-k_{x}, p}\right)}{\ln \left(p / k_{x}\right)}\right|\right)^{\tau(x)-2}-1 \right\rvert\,>t\right) \\
& \leq \sup _{p \in I_{x}} \mathbb{P}\left(\left(1-\left|\frac{\ln T_{p-k_{x}, p}}{\ln \left(p / k_{x}\right)}-1\right|\right)^{\tau(x)-3}>a\right)+\sup _{p \in I_{x}} \mathbb{P}\left(\left|\frac{\ln T_{p-k_{x}, p}}{\ln \left(p / k_{x}\right)}-1\right|>\frac{t}{2 a}\right) \\
& =\sup _{p \in I_{x}} \mathbb{P}\left(\left|\frac{\ln T_{p-k_{x}, p}}{\ln \left(p / k_{x}\right)}-1\right|>1-a^{\frac{1}{\tau(x)-3}}\right)+\sup _{p \in I_{x}} \mathbb{P}\left(\left|\frac{\ln T_{p-k_{x}, p}}{\ln \left(p / k_{x}\right)}-1\right|>\frac{t}{2 a}\right) \\
& \rightarrow 0 .
\end{aligned}
$$

Concerning now the term $\widetilde{\theta}_{12}\left(k_{x} ; x\right)$ (which only needs to be considered in case $\tau(x)<1$), remark that

$$
\left|\sqrt{k_{x}} \widetilde{\theta}_{12}\left(k_{x} ; x\right)\right| \leq\left|\frac{\theta(x)}{2} \frac{\sqrt{k_{x}}}{\ln \frac{n_{x}}{k_{x}}} \frac{\ln \frac{n_{x}}{k_{x}}}{\ln T_{p-k_{x}, p}} \frac{\left(\ln T_{p-k_{x}, p}\right)^{\tau(x)-1}}{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}} \frac{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} \frac{1}{k_{x}} \sum_{i=1}^{k_{x}}\left(\ln T_{i}^{*}(p)\right)^{2}\right| .
$$

Combining again Lemma 6 in Stupfler (2013) with our Lemmas 1 and 3 together with our assumptions, we infer that

$$
\sup _{p \in I_{x}} \mathbb{P}\left(\left|\sqrt{k_{x}} \widetilde{\theta}_{12}\left(k_{x} ; x\right)\right|>t\right) \longrightarrow 0
$$

For $\widetilde{\theta}_{2}\left(k_{x} ; x\right)$, we need also to distinguish between the two cases $\tau(x)=1$ and $\tau(x)<1$. We first consider the case $\tau(x)=1$, where we use the fact that $b(. ; x)$ is regularly varying at infinity combining with Lemma 6 in Stupfler (2013) and the law of large numbers according to which
$\sup _{p \in I_{x}} \mathbb{P}\left(\left|\frac{1}{k_{x}} \sum_{i=1}^{k_{x}} \frac{\left(T_{i}^{*}(p)\right)^{\rho(x)}-1}{\rho(x)}-\frac{1}{1-\rho(x)}\right|>t\right)=\mathbb{P}\left(\left|\frac{1}{k_{x}} \sum_{i=1}^{k_{x}} \frac{T_{i}^{\rho(x)}-1}{\rho(x)}-\frac{1}{1-\rho(x)}\right|>t\right) \longrightarrow 0$.
The convergence

$$
\sup _{p \in I_{x}} \mathbb{P}\left(\left|\sqrt{k_{x}} \widetilde{\theta}_{2}\left(k_{x} ; x\right)-\frac{\lambda}{1-\rho(x)}\right|>t\right) \longrightarrow 0
$$

then follows from our assumptions and our Lemma 3. In the case where $\tau(x)<1$, using the same arguments as in the proof of Theorem 1, we have the following decomposition

$$
\widetilde{\theta}_{2}\left(k_{x} ; x\right)=: \widetilde{\theta}_{21}\left(k_{x} ; x\right)+\widetilde{\theta}_{22}\left(k_{x} ; x\right)+\widetilde{\theta}_{23}\left(k_{x} ; x\right)
$$

where

$$
\begin{aligned}
& \widetilde{\theta}_{21}\left(k_{x} ; x\right):=\left(1+\delta_{n}\right) b\left(\exp \left(D_{\tau(x)}\left(\ln T_{p-k_{x}, p}\right)\right) ; x\right) \frac{\left(\ln T_{p-k_{x}, p}\right)^{\tau(x)-1}}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} \frac{1}{k_{x}} \sum_{i=1}^{k_{x}} \ln T_{i}^{*}(p) \\
& \widetilde{\theta}_{22}\left(k_{x} ; x\right):=\left(1+\delta_{n}\right) \frac{b\left(\exp \left(D_{\tau(x)}\left(\ln T_{p-k_{x}, p}\right)\right) ; x\right)}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} \frac{1}{k_{x}} \sum_{i=1}^{k_{x}} \ln T_{i}^{*}(p) \\
& \cdot e^{\rho(x)\left[D_{\tau(x)}\left(\ln \widetilde{T}_{i}(p)+\ln T_{p-k_{x}, p}\right)-D_{\tau(x)}\left(\ln T_{p-k_{x}, p}\right)\right]\left\{\left(\ln T_{p-k_{x}, p}+\ln \widetilde{T}_{i}(p)\right)^{\tau(x)-1}-\left(\ln T_{p-k_{x}, p}\right)^{\tau(x)-1}\right\}} \\
& \widetilde{\theta}_{23}\left(k_{x} ; x\right):=\left(1+\delta_{n}\right) b\left(\exp \left(D_{\tau(x)}\left(\ln T_{p-k_{x}, p}\right)\right) ; x\right) \frac{\left(\ln T_{p-k_{x}, p}\right)^{\tau(x)-1}}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)} \\
& \cdot \frac{1}{k_{x}} \sum_{i=1}^{k_{x}} \ln T_{i}^{*}(p)\left\{e^{\rho(x)\left[D_{\tau(x)}\left(\ln \widetilde{T}_{i}(p)+\ln T_{p-k_{x}, p}\right)-D_{\tau(x)}\left(\ln T_{p-k_{x}, p}\right)\right]}-1\right\}
\end{aligned}
$$

Using the regularly varying property of $b(. ; x)$, the law of large numbers, our Lemmas 1-3 and our assumptions, combining with the mean value theorem for $\widetilde{\theta}_{22}\left(k_{x} ; x\right)$ and $\widetilde{\theta}_{23}\left(k_{x} ; x\right)$, we deduce that

$$
\begin{aligned}
\sup _{p \in I_{x}} \mathbb{P}\left(\left|\sqrt{k_{x}} \widetilde{\theta}_{21}\left(k_{x} ; x\right)-\lambda\right|>t\right) & \longrightarrow 0 \\
& \sup _{p \in I_{x}} \mathbb{P}\left(\left|\sqrt{k_{x}} \widetilde{\theta}_{22}\left(k_{x} ; x\right)\right|>t\right) \\
& \longrightarrow 0 \\
\sup _{p \in I_{x}} \mathbb{P}\left(\left|\sqrt{k_{x}} \widetilde{\theta}_{23}\left(k_{x} ; x\right)\right|>t\right) & \longrightarrow 0
\end{aligned}
$$

For what concerns the remainder term $R_{p}(x)$, using the same arguments as in the proof of Theorem 1, we get for all $t>0$, that

$$
\begin{aligned}
\left\{\left|\sqrt{k_{x}} \frac{2 \omega\left(T_{p-k_{x}, p}, T_{p, p}, x, h\right)}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)}\right|>t\right\} \subseteq & \left\{\left|\sqrt{k_{x}} \frac{2 \omega\left(\frac{n_{x}}{(1+\delta) k_{x}}, n_{x}^{1+\delta}, x, h\right)}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)}\right|>t\right\} \cup\left\{T_{p-k_{x}, p}<\frac{n_{x}}{(1+\delta) k_{x}}\right\} \\
& \cup\left\{T_{p, p}>n_{x}^{1+\delta}\right\} .
\end{aligned}
$$

Taking now n_{x} sufficiently large, this implies by assumption that

$$
\begin{aligned}
\sup _{p \in I_{x}} \mathbb{P}\left(\left|\sqrt{k_{x}} \frac{2 \omega\left(T_{p-k_{x}, p}, T_{p, p}, x, h\right)}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)}\right|>t\right) & \leq \sup _{p \in I_{x}} \mathbb{P}\left(T_{p-k_{x}, p}<\frac{n_{x}}{(1+\delta) k_{x}}\right)+\sup _{p \in I_{x}} \mathbb{P}\left(T_{p, p}>n_{x}^{1+\delta}\right) \\
& \longrightarrow 0 .
\end{aligned}
$$

This convergence combined with (4) and Lemma 2 ensures that

$$
\sup _{p \in I_{x}} \mathbb{P}\left(\left|\sqrt{k_{x}} R_{p}(x)\right|>t\right) \longrightarrow 0 .
$$

Combining all these convergences yield our Theorem 2.

Appendix

In this section we introduce some lemmas which are useful for establishing the main results.
Lemma 1 Assume that $n_{x} \rightarrow \infty, k_{x} \rightarrow \infty$ such that $\frac{k_{x}}{n_{x}} \rightarrow 0$. If $\tau(x)<1$, then there exist a constant $C>0$, such that

$$
\sup _{p \in I_{x}}\left|\frac{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)}-1\right| \leq C\left(\ln \frac{n_{x}}{k_{x}}\right)^{-1} .
$$

Proof: First note that we have $\mu_{\tau(x)}(y)=y^{\tau(x)-1}+\widetilde{R}(y)$, with

$$
\widetilde{R}(y):=\frac{\tau(x)-1}{2} y^{\tau(x)-2} \int_{0}^{\infty}(1+\xi)^{\tau(x)-2} u^{2} e^{-u} d u,
$$

where ξ is a value between 0 and $\frac{u}{y}$. Hence $|\widetilde{R}(y)| \leq y^{\tau(x)-2}$. Consequently

$$
\left|\frac{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}}{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)}-1\right|=\left|\frac{\widetilde{R}\left(\ln \frac{p}{k_{x}}\right)}{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}+\widetilde{R}\left(\ln \frac{p}{k_{x}}\right)}\right| \leq\left(\ln \frac{p}{k_{x}}\right)^{-1}\left(1+O\left(\left(\ln \frac{p}{k_{x}}\right)^{-1}\right)\right)^{-1} .
$$

Since

$$
\sup _{p \in I_{x}}\left(\ln \frac{p}{k_{x}}\right)^{-1} \leq\left(\ln \frac{n_{x}\left(1-n_{x}^{-\frac{1}{4}}\right)}{k_{x}}\right)^{-1}
$$

the result easily follows.

Lemma 2 Assume that $n_{x} \rightarrow \infty, k_{x} \rightarrow \infty$ such that $\frac{k_{x}}{n_{x}} \rightarrow 0$. Then

$$
\frac{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)} \rightarrow 1
$$

uniformly in $p \in I_{x}$.
Proof: We start by rewriting the term $\frac{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)}-1$ as

$$
\frac{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)}-1=\left(\frac{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)}{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}}-1\right) \frac{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)}+\frac{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)}-1
$$

According to Lemma 2 in Gardes et al. (2011), $\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right) \sim\left(\ln \frac{n_{x}}{k_{x}}\right)^{\tau(x)-1}$. Thus, using a Taylor series expansion combining with the fact that uniformly in $p \in I_{x}, \ln \frac{p}{n_{x}} \rightarrow 0$, we have

$$
\begin{equation*}
\left|\frac{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}}{\mu_{\tau(x)}\left(\ln \frac{n_{x}}{k_{x}}\right)}-1\right| \sim\left|\left(1+\frac{\ln \frac{p}{n_{x}}}{\ln \frac{n_{x}}{k_{x}}}\right)^{\tau(x)-1}-1\right| \longrightarrow 0 \tag{5}
\end{equation*}
$$

uniformly in $p \in I_{x}$. Moreover, from the proof of Lemma 1 , we know that

$$
\begin{equation*}
\left|\frac{\mu_{\tau(x)}\left(\ln \frac{p}{k_{x}}\right)}{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}}-1\right|=\left|\frac{\widetilde{R}\left(\ln \frac{p}{k_{x}}\right)}{\left(\ln \frac{p}{k_{x}}\right)^{\tau(x)-1}}\right| \leq\left(\ln \frac{p}{k_{x}}\right)^{-1} \longrightarrow 0 \tag{6}
\end{equation*}
$$

uniformly in $p \in I_{x}$. Combining (5) and (6), our Lemma 2 follows.

Lemma 3 Assume that I_{n} is some index set, and, for $p \in I_{n}$ let $\left(X_{n}(p)\right)_{n}$ and $\left(Y_{n}(p)\right)_{n}$ be sequences of random variables. If for all $\varepsilon>0$ and some $x, y \in \mathbb{R}$,

$$
\sup _{p \in I_{n}} \mathbb{P}\left(\left|X_{n}(p)-x\right|>\varepsilon\right) \longrightarrow 0
$$

and

$$
\sup _{p \in I_{n}} \mathbb{P}\left(\left|Y_{n}(p)-y\right|>\varepsilon\right) \longrightarrow 0
$$

as $n \rightarrow \infty$, then

$$
\sup _{p \in I_{n}} \mathbb{P}\left(\left|X_{n}(p) Y_{n}(p)-x y\right|>\varepsilon\right) \longrightarrow 0
$$

as $n \rightarrow \infty$.

Proof: Note that for all $p \in I_{n}$,

$$
\begin{aligned}
& \left\{\left|X_{n}(p) Y_{n}(p)-x y\right|>\varepsilon\right\} \subseteq\left\{\left|\left(X_{n}(p)-x\right)\right|>1\right\} \cup\left\{\left|\left(Y_{n}(p)-y\right)\right|>\frac{\varepsilon}{3}\right\} \\
& \cup\left\{\left|y\left(X_{n}(p)-x\right)\right|>\frac{\varepsilon}{3}\right\} \cup\left\{\left|x\left(Y_{n}(p)-y\right)\right|>\frac{\varepsilon}{3}\right\} .
\end{aligned}
$$

Lemma 3 then follows using the subadditivity property of a probability measure.

Acknowledgements

This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416). The authors are grateful to the referee and the associate editor for their comments on the preliminary version of the paper.

References

[1] de Wet, T., Goegebeur, G., Guillou, A., Osmann, M., 2015. Kernel regression with Weibulltype tails. Submitted.
[2] Gardes, L., Girard, S., Guillou, A., 2011. Weibull tail-distributions revisited: A new look at some tail estimators. J. Statist. Plann. Inference 141, 429-444.
[3] Goegebeur, Y., Guillou, A., Schorgen, A., 2014. Nonparametric regression estimation of conditional tails - the random covariate case. Statistics 48, 732-755.
[4] Stupfler, G., 2013. A moment estimator for the conditional extreme value index. Electron. J. Stat. 7, 2298-2343.

[^0]: *Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark (email: yuri.goegebeur@imada.sdu.dk).
 ${ }^{\dagger}$ Institut Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS, 7 rue René Descartes, 67084 Strasbourg cedex, France (email: armelle.guillou@math.unistra.fr).
 ${ }^{\ddagger}$ Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark (email: mosma@imada.sdu.dk).

