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Abstract The stable tail dependence function gives a full characterisation of
the extremal dependence between two or more random variables. In this paper,
we propose an estimator for this function which is robust against outliers in
the sample. The estimator is derived from a bivariate second order tail model
together with a proper transformation of the bivariate observations, and its
asymptotic properties are studied under some suitable regularity conditions.
Our estimation procedure depends on two parameters: α, which controls the
trade-off between efficiency and robustness of the estimator, and a second or-
der parameter τ , which can be replaced by a fixed value or by an estimate.
In case where τ has been replaced by the true value or by an external con-
sistent estimator, our robust estimator is asymptotically unbiased, whereas in
case where τ is mis-specified, one loses this property, but still our estimator
performs quite well with respect to bias. The finite sample performance of our
robust and bias-corrected estimator of the stable tail dependence function is
examined on a simulation study involving uncontaminated and contaminated
samples. In particular its behavior is illustrated for different values of the pair

This work was supported by a research grant (VKR023480) from VILLUM FONDEN and
an international project for scientific cooperation (PICS-6416).

M. Escobar-Bach & Y. Goegebeur
Department of Mathematics and Computer Science, University of Southern Denmark, Cam-
pusvej 55, 5230 Odense M, Denmark
Tel.: +45-65504476
Fax: +45-65503345
E-mail: Yuri.Goegebeur@imada.sdu.dk

A. Guillou
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(α, τ) and is compared with alternative estimators from the extreme value
literature.
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1 Introduction

Modelling dependence among variables is a challenging topic in multivariate
extreme value theory. For instance, in the case of environmental data, it can
be of interest to link still water levels and wave heights in order to avoid
flooding, whereas in finance measuring the dependence between risky asset
returns can be crucial. Extremal dependence can be measured by coefficients
that give a representative picture of the dependence, like e.g. the coefficient of
tail dependence (Ledford and Tawn, 1996, 1997). Alternatively one could use
functions that give a complete characterisation of the extreme dependence, e.g.
the spectral distribution function (Einmahl et al., 1997) or the Pickands de-
pendence function (Pickands, 1981). We also refer to Beirlant et al. (2004) and
de Haan and Ferreira (2006) for recent accounts on the available approaches
for describing tail dependence. In this paper, we focus on the bivariate stable
tail dependence function, firstly introduced by Huang (1992) as follows. Let
(X,Y ) be a bivariate vector with continuous marginal distribution functions
FX and FY . The stable tail dependence function is defined for (x, y) ∈ R2

+ as

L(x, y) := lim
t↓0

{
1

t
P (1− FX(X) ≤ tx or 1− FY (Y ) ≤ ty)

}
which can be rewritten as

L(x, y) = lim
t↓0

{
1

t
[1− F (F←X (1− tx), F←Y (1− ty))]

}
(1)

with F the bivariate distribution function of the vector (X,Y ) and F←? (t) :=
inf{z : F?(z) ≥ t} where ? denotes either X or Y . This convergence (1) is
relevant in multivariate extreme value theory: indeed if FX and FY are in the
max-domains of attraction of some extreme value distributions GX and GY ,
respectively, and if (1) is satisfied, then F is in the max-domain of attraction of
an extreme value distribution G with marginals GX and GY and with copula
function determined by L. Estimating this function L is thus of interest and
is the subject of this paper.

With this aim in mind, consider a sample of size n drawn from F and an
intermediate sequence m = mn, i.e. m → ∞ as n → ∞ with m/n → 0. Let
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Fig. 1 Logistic distribution, (x, y) = (0.5, 0.5). Comparison between the empirical estimator

L̃m(x, y) (dotted line), a bias-corrected estimator L̃m,0.4,990(x, y) from Fougères et al. (2015)

(dashed-dotted line) and its aggregated version L̃agg (horizontal dashed-dotted line), and
the bias-corrected estimator Lm,990(x, y) proposed in Beirlant et al. (2016) (dashed line)
in case of 5% of contamination (see Section 4 for their definitions). On the left: mean and
on the right: MSE based on 500 samples of size 1000. The solid horizontal line in the left
display is the true value of L(x, y).

Xm,n, resp. Ym,n, denote the m−th order statistic among n realisations of the
margins X, resp. Y . The empirical estimator of L is then given by

L̃m(x, y) =
1

m

n∑
i=1

1l{Xi≥Xn−[mx]+1,n or Yi≥Yn−[my]+1,n}. (2)

The weak convergence of this estimator, after proper normalisation, was es-
tablished by Huang (1992). Other related references include Qi (1997), Drees
and Huang (1998), Capéraà and Fougères (2000), Abdous and Ghoudi (2005),
Schmidt and Stadtmüller (2006), Bücher et al. (2011). This estimator can suf-
fer from bias as illustrated in Peng (2010), Fougères et al. (2015) or Beirlant
et al. (2016) where bias-corrected estimators have been proposed. However, in
practical data analysis, it can also happen that observations are contaminated
in the sense that some outliers may have a disturbing effect on the estimators.
Such a situation is illustrated in Figure 1 where we plot the mean and the
mean squared error (MSE) of L̃m(x, y) and some recently introduced bias-
corrected estimators for L(x, y) as a function of m. The estimates are based
on 500 samples of size 1000 from a Logistic distribution with 5% of contam-
ination (as described in Section 4). As is clear from this figure, the classical
estimators behave very poorly.

To solve this issue, it is important to propose robust estimators which also
keep the nice property of being asymptotically unbiased as those proposed
by Fougères et al. (2015) and Beirlant et al. (2016). This is the aim of the
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present paper, where we propose to use the minimum density power diver-
gence (MDPD) criterion introduced by Basu et al. (1998). This idea consists
of defining the density power divergence between density functions f and h as
follows

∆α(f, h) :=


∫
R

[
h1+α(y)−

(
1 +

1

α

)
hα(y)f(y) +

1

α
f1+α(y)

]
dy, α > 0,∫

R
log

f(y)

h(y)
f(y)dy, α = 0.

Remark that for α = 0 one recovers the Kullback-Leibler divergence,
whereas setting α = 1 leads to the L2 divergence. Assume that the density
function h depends on a parameter vector θ, and let Y1, . . . , Yn be a sample
of independent and identically distributed random variables according to the
density function f . The minimum density power divergence estimator (MD-

PDE) is the point θ̂ minimizing the empirical density power divergence

∆̂α(θ) :=


∫
R
h1+α(y)dy −

(
1 +

1

α

)
1

n

n∑
i=1

hα(Yi), α > 0,

− 1

n

n∑
i=1

log h(Yi), α = 0.

Note that in case α = 0, the empirical density power divergence corre-
sponds with minus the log-likelihood function. The parameter α controls the
trade-off between efficiency and robustness of the MDPDE: it becomes more
efficient but less robust against outliers as α gets closer to zero, whereas by
increasing α the robustness increases and the efficiency decreases.

In the present paper we introduce a robust and bias-corrected estimator of
the stable tail dependence function L. To the best of our knowledge, robust
and bias-corrected estimation of L has not been considered in the extreme
value literature. The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce our estimator of L(x, y), while in Section 3 we establish
its asymptotic properties. The finite sample performance of our procedure is
examined in Section 4 on a simulation study. The proofs of our main results
are postponed to the appendix, whereas the supplementary material contains
the proof of a crucial but intermediate result (namely Theorem 1) together
with some additional simulations.

2 Construction of the estimators

Let (X,Y ) be a bivariate random vector with continuous marginal distribution
functions FX and FY satisfying

P (1− FX(X) < x, 1− FY (Y ) < y) = xd1yd2g(x, y)

(
1 +

1

η
δ(x, y)

)
, (3)
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for (x, y) ∈ [0, 1]2 \ {(0, 0)}, where d1, d2 are positive constants such that
d1 + d2 = η−1 ∈ (0, 1], g is a continuous homogeneous function of order 0 and
δ a function of constant sign in the neighbourhood of zero, with |δ| being a
bivariate regularly varying function, that is, there exists a function ξ such that

lim
t↓0

|δ|(tx, ty)

|δ|(t, t)
= ξ(x, y), (4)

for all (x, y) ∈ [0,∞)2 \ {(0, 0)}. Also, ξ is assumed to be continuous, ho-
mogeneous of order τ > 0, and the convergence is uniform on {(x, y) ∈
[0,∞)2|x2 + y2 = 1}. Note that model (3) is essentially a condition on the
copula function C of F . Indeed, one easily verifies that

P (1− FX(X) < x, 1− FY (Y ) < y) = x+ y − 1 + C(1− x, 1− y).

If η ∈ (0, 1) then we are in the asymptotic independence case, and in that
context L(x, y) = x + y for x, y > 0. As such, estimating L is not relevant,
and main interest is in estimating η, as has been done in Beirlant and Van-
dewalle (2002), Beirlant et al. (2011), Goegebeur and Guillou (2013), Dutang
et al. (2014). On the contrary, if η = 1 then we are in the case of asymptotic
dependence, and in that context estimating L is the subject of interest. Our
starting point is thus model (3) with d1 + d2 = 1.

For convenience we suppose that the marginal distributions are unit Pareto.
In that case, model (3) with η = 1 becomes

P (X > x, Y > y) = x−d1y−d2g

(
1

x
,

1

y

)(
1 + δ

(
1

x
,

1

y

))
, x, y > 1. (5)

Note that one can write

P (X > x, Y > y) = P
(
X > x,

ω

1− ω
Y > x

)
,

where ω := x/(x + y) ∈ (0, 1) can be interpreted as being a radial parame-
ter. Thus the transformed variable Zω := min(X, ω

1−ωY ) admits the following
survival function

FZω (x) =

(
1− ω
ω

)−d2
g

(
1

x
,

ω

1− ω
1

x

)
x−1

(
1 + δ

(
1

x
,

ω

1− ω
1

x

))
=

(
1− ω
ω

)−d2
g

(
1,

ω

1− ω

)
x−1

(
1 + δ

(
1

x
,

ω

1− ω
1

x

))
=: Kω x

−1 (1 + δω(x)) (6)

using the homogeneity of order 0 of g.



6 Mikael Escobar-Bach et al.

Now, if we come back to our initial problem which is estimating the bivari-
ate stable tail dependence function, recall that

L(x, y) = lim
t↓0

{
1

t
P (1− FX(X) ≤ tx) +

1

t
P (1− FY (Y ) ≤ ty)

−1

t
P (1− FX(X) ≤ tx, 1− FY (Y ) ≤ ty)

}
= lim

t↓0

{
x+ y − 1

t
P
(
Z1−ω ≥

1

tx

)}
= lim

t↓0

{
x+ y − xK1−ω

(
1 + δ1−ω

(
1

tx

))}
by (6). This leads to the simple estimator

L̂m(x, y) = x+ y − xK̂1−ω,m, (7)

which requires an estimate for K1−ω. This estimator K̂1−ω,m can now be
obtained as follows. Consider the tail distribution of Z1−ω given in (6). This
distribution function belongs to the class of distribution functions introduced
in Beirlant et al. (2009) and called Condition (R) in Dierckx et al. (2013).
As shown in Beirlant et al. (2009), the distribution function of the relative
excesses Z1−ω/u given that Z1−ω > u can, for u large, be approximated by an
extended Pareto distribution (EPD) function given by

H(y; δ1−ω(u), τ) :=

{
1− y−1

[
1 + δ1−ω(u)(1− y−τ )

]−1
, y > 1,

0, y ≤ 1,

where δ1−ω(u) > max{−1,−1/τ}. Moreover, using Proposition 2.3 in Beirlant
et al. (2009) the approximation error is uniformly o(δ1−ω(u)) for u → ∞.
Using this property, one can estimate δ1−ω(u) by fitting the density function
h associated with H to the relative excesses Z1−ω/u given that Z1−ω > u
using e.g. the MDPD criterion.

In practice, the sample of pairs at our disposal, say (X1, Y1), ..., (Xn, Yn),
have unknown margins. Thus the first step is to transform the margins into
unit Pareto distributions. To this aim, we can use the empirical distribution
functions of the X and Y observations. This gives

Z̃1−ω,i := min

(
n+ 1

n+ 1−RXi
,

1− ω
ω

n+ 1

n+ 1−RYi

)
with RXi and RYi denoting the rank of Xi and Yi, i = 1, ..., n, in the re-
spective samples. Then, in a second step, the parameter δ1−ω(u) of the EPD
is estimated by fitting the density function h to the relative excesses Ej :=

Z̃1−ω,n−j+1,n/Z̃1−ω,n−m,n, j = 1, ...,m, where 1 ≤ m ≤ n− 1 using the mini-
mum density power divergence criterion. Note that, as usual in extreme value
statistics, we use for the threshold u the (m+1) largest observation Z̃1−ω,n−m,n
within the sample. Concerning the parameter τ of the EPD, we fix it at some
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value, either the true one or a mis-specified one, or we estimate it externally in
a consistent way. External estimation of second order parameters is quite com-
mon in the univariate framework, see e.g. Gomes and Martins (2002), Gomes
et al. (2008) and Dierckx et al. (2013). Joint estimation of δ1−ω(u) and τ has
been considered, but leads to theoretical difficulties. In particular, we would
need to introduce

√
mq1(k/n) → ∞, which is not in accordance with the as-

sumptions of our Theorem 1 where the quantile process of Z̃1−ω is studied.
To get around this one would need to introduce a third order model with
strict unit Pareto margins for deriving the asymptotic properties. The fact
that we cannot use the empirical transformation of the margins (as we do in
our methodology) due to the inversion procedure in the proof of Theorem 1,
implies that such a method with strict Pareto margins would be very restric-
tive and without practical interest. Moreover, from a practical perspective,
one can expect that joint estimation of δ1−ω and τ will lead to an increase
in the asymptotic variance, as was already observed in the univariate context.
Therefore, this approach is not pursued in this paper. Finally, in a last step,
an estimator of K1−ω follows

K̂1−ω,m =
m

n

Z̃1−ω,n−m,n

1 + δ̂1−ω(Z̃1−ω,n−m,n)
(8)

from which the estimator of L(x, y) can be deduced by applying (7). The esti-
mator (8) can be intuitively motivated as follows. Consider the tail distribution
of Z1−ω/u given that Z1−ω > u:

FZ1−ω (ux)

FZ1−ω (u)
=
K1−ω(ux)−1(1 + δ1−ω(ux))

FZ1−ω (u)
.

Take u = Z1−ω,n−m,n, replace the denominator of the above display by its
empirical value, being m/n, and set x = 1, to obtain

1 ≈ n

m
K1−ωZ

−1
1−ω,n−m,n(1 + δ1−ω(Z1−ω,n−m,n)),

and thus

K1−ω ≈
m

n

Z1−ω,n−m,n

1 + δ1−ω(Z1−ω,n−m,n)
.

The estimator (8) is then obtained by replacing Z1−ω,n−m,n by its empir-

ical analogue Z̃1−ω,n−m,n, and δ1−ω(Z̃1−ω,n−m,n) by its MDPDE, denoted

δ̂1−ω(Z̃1−ω,n−m,n).

3 Asymptotic properties

The crucial point in the methodology consists of computing the estimate for
δ1−ω(Z̃1−ω,n−m,n) by using the MDPD criterion. In the sequel, although this
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parameter depends on the threshold Z̃1−ω,n−m,n, we do not make this depen-
dence explicit but prefer to use the notation δ1−ω for simplicity. As we already
mentioned, the parameter τ of the EPD is not estimated jointly with δ1−ω by
the MDPD method but it is fixed at some value or estimated externally. The
MDPDE of δ1−ω satisfies thus the estimating equation∫ ∞
1

hα(y; δ1−ω, τ)
∂h(y; δ1−ω, τ)

∂δ1−ω
dy − 1

m

m∑
j=1

hα−1(Ej ; δ1−ω, τ)
∂h(Ej ; δ1−ω, τ)

∂δ1−ω
= 0, (9)

where the density function h of the EPD is given by

h(y; δ1−ω, τ) = y−2
(
1 + δ1−ω(1− y−τ )

)−2 (
1 + δ1−ω(1− (1− τ)y−τ )

)
, y > 1,

with τ > 0 and δ1−ω > max{−1,−1/τ}. Note that the estimating equation (9)
depends only on the data through statistics of the form (1/m)

∑m
j=1E

s
j for s <

0. Thus, considering the tail quantile process Qn(t) := Z̃1−ω,n−[mt],n, 0 < t <

n/m, these statistics can be expressed as the functional
∫ 1

0
(Qn(t)/Qn(1))sdt.

For the sequel it is instructive to keep in mind that (3) satisfies the following
second order multivariate regular variation condition introduced in Draisma
et al. (2004):

Condition (SO): Let (X,Y ) be a random vector with joint distribution
function F and continuous marginal distribution functions FX and FY such
that

lim
t↓0

q1(t)−1
(
P (1− FX(X) < tx, 1− FY (Y ) < ty)

P (1− FX(X) < t, 1− FY (Y ) < t)
− c(x, y)

)
=: c1(x, y) (10)

exists for all x ≥ 0, y ≥ 0 with x + y > 0, a function q1 tending to zero as
t ↓ 0, and c1 a function neither constant nor a multiple of c. Moreover, we
assume that the convergence is uniform on {(x, y) ∈ [0,∞)2|x2 + y2 = 1}.

In case η = 1, the specific functions of Condition (SO) are for model (3)
given by 

c(x, y) = xd1yd2
g(x, y)

g(1, 1)
,

q1(t) = τδ(t, t),

c1(x, y) = c(x, y)
ξ(x, y)− 1

τ
,

(11)

as shown in Lemma 1 of Dutang et al. (2014).
As a preliminary result, we establish in our first theorem the behavior of

the tail quantile process Qn(t), when correctly normalized. To this aim, set
c1−ω := c(1, (1 − ω)/ω), ξ1−ω := ξ(1, (1 − ω)/ω), q(t) := P(1 − FX(X) <
t, 1− FY (Y ) < t), let k/n = q←(m/n), and denote ` = limn→∞m/k. Remark
that this limit exists, see (20) infra.

Theorem 1. Let (X1, Y1), ..., (Xn, Yn) be independent copies of the random
vector (X,Y ) which has a joint distribution satisfying (3) with η = 1 such that
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the function c given in (11) has continuous first order partial derivatives. For
m, k →∞, as n→∞ such that

√
mq1(k/n)→ λ ∈ R we have that there exist

suitable versions of Qn such that for all t0, ε > 0

sup
0<t≤t0

t
3
2
+ε

∣∣∣∣∣∣√m
(
k

n
Qn(t)−

c1−ω

t

)
−
c1−ω

t2
W

(
t

c1−ω

)
− λ

c1−ω

t

( t
c1−ω

)τ ξ1−ω − 1

τ

∣∣∣∣∣∣ = oP(1),

where

W (x) := W̃

(
x, x

1− ω
ω

)
with

W̃ (x, y) :=
1
√
`

[W (x, 0) +W (0, y)−W (x, y)]−
√
` [cx(x, y)W (x, 0) + cy(x, y)W (0, y)] ,

where cx and cy denote the derivatives of c with respect to x and y, respectively,
and W a Gaussian process with mean zero and covariance structure given by

E (W (x1, y1)W (x2, y2)) = x1 ∧ x2 + y1 ∧ y2
−` [c(x1, y1) + c(x2, y2)− c(x1 ∨ x2, y1 ∨ y2)] .

Note that this theorem is in spirit close to the one derived in Dutang et al.
(2014, Theorem 1) but here we consider the case η = 1 and we have a process

W̃ much more complicated. We refer to the supplementary material for the
proof of this theorem. The covariance structure of W can be obtained after
tedious computations involving mainly the use of the covariance structure of
W and the homogeneity properties of cx and cy. It is given by

E
(
W

(
t1
c1−ω

)
W

(
t2
c1−ω

))
= t1 + t2 − t1 ∨ t2

+`

{
t1 ∧ t2
c1−ω

[
c2x

(
1,

1− ω
ω

)
+ c2y

(
1,

1− ω
ω

)
1− ω
ω

]
−cx

(
1,

1− ω
ω

)[
t1 ∧ t2 +

c(t1 ∧ t2, t1 ∨ t2 1−ω
ω )

c1−ω

]
−cy

(
1,

1− ω
ω

)[
t1 ∧ t2 +

c(t1 ∨ t2, t1 ∧ t2 1−ω
ω )

c1−ω

]}
+

`2

c1−ω
cx

(
1,

1− ω
ω

)
cy

(
1,

1− ω
ω

)
×
[
c

(
t1 ∧ t2, t1 ∨ t2

1− ω
ω

)
+ c

(
t1 ∨ t2, t1 ∧ t2

1− ω
ω

)]
.

We are now able to derive the asymptotic behavior of our main statistic
appearing in the estimating equation (9).
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Theorem 2. Under the assumptions of Theorem 1, for any s < 0, we have
that

1

m

m∑
j=1

(
Z̃1−ω,n−j+1,n

Z̃1−ω,n−m,n

)s
=

1

1− s
+

s
√
m

∫ 1

0
t−s

(
1

t
W

(
t

c1−ω

)
−W

(
1

c1−ω

))
dt

−
λ s

(1− s)(1− s+ τ)

ξ1−ω

cτ1−ω

1
√
m

+ oP

(
1
√
m

)
.

From now on we will denote the true value of δ1−ω by δ0. Note that δ0 =

δ0(Z̃1−ω,n−m,n). We want to prove the convergence in distribution of L̂m(x, y).

This requires to establish the weak convergence of K̂1−ω,m which is a function

of the MDPDE δ̂1−ω and Z̃1−ω,n−m,n = Qn(1). Consequently, in the next

theorem, we derive the convergence in distribution of the vector

(
Qn(1)

δ̂1−ω

)
correctly normalized, in case where τ is replaced by the true value τ0, by a
mis-specified value, say τ̃ , possibly different from τ0, or by a suitable external
estimator τ̂ .

Theorem 3. Under the assumptions of Theorem 1 we have that

√
m

(
k
nQn(1)− c1−ω
δ̂1−ω − δ0

)
d−→
(
AQ
Aτ

)
where

AQ := c1−ωW

(
1

c1−ω

)
+ λc1−ω

c−τ01−ωξ1−ω − 1

τ0

and
• in case τ = τ0

Aτ0 :=
(1 + 2α)(1 + 2α+ τ0)(1 + 2α+ 2τ0)

τ20 (1 + τ0 + 2ατ0 + 4α2)

[
2α

∫ 1

0
t2α

(
1

t
W

(
t

c1−ω

)
−W

(
1

c1−ω

))
dt

−(2α+ τ0)(1 + τ0)

∫ 1

0
t2α+τ0

(
1

t
W

(
t

c1−ω

)
−W

(
1

c1−ω

))
dt

]
• in case τ = τ̃ , a mis-specified value

Aτ̃ :=
(1 + 2α)(1 + 2α+ τ̃)(1 + 2α+ 2τ̃)

τ̃2(1 + τ̃ + 2ατ̃ + 4α2)

{
2α

∫ 1

0
t2α

(
1

t
W

(
t

c1−ω

)
−W

(
1

c1−ω

))
dt

−(2α+ τ̃)(1 + τ̃)

∫ 1

0
t2α+τ̃

(
1

t
W

(
t

c1−ω

)
−W

(
1

c1−ω

))
dt

+λ
ξ1−ω

cτ01−ω

[
−2α

(1 + 2α)(1 + 2α+ τ0)
+

(2α+ τ̃)(1 + τ̃)

(1 + 2α+ τ̃)(1 + 2α+ τ0 + τ̃)

−
τ̃2(1 + τ̃ + 2ατ̃ + 4α2)

τ0(1 + 2α)(1 + 2α+ τ̃)(1 + 2α+ 2τ̃)

]}

• in case τ = τ̂ , an external estimator satisfying
√
k q1

(
k
n

)
(τ̂ − τ) = OP(1)

with k an intermediate sequence such that
√

m
k
/q1(k/n) −→ 0

Aτ̂ = Aτ0 .
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As is clear from Theorem 3, our estimator δ̂1−ω is asymptotically unbiased
in the sense that the expectation of Aτ0 is zero, whatever the value of λ. This
is also the case for Aτ̂ but not for Aτ̃ if τ̃ 6= τ0.

As a corollary of Theorem 3, we can deduce the convergence in distribution
of L̂m(x, y).

Corollary 4. Under the assumptions of Theorem 3 we have that

√
m
(
L̂m(x, y)− L(x, y)

)
d−→ −x`AQ + xK1−ωAτ + xK1−ωλ

c−τ01−ωξ1−ω − 1

τ0
.

Again we can easily check that in case τ = τ0 or if τ is replaced by an ex-

ternal estimator satisfying
√
k q1

(
k
n

)
(τ̂ − τ) = OP(1) with k an intermediate

sequence such that
√

m
k
/q1(k/n) −→ 0, our estimator of L(x, y) is asymptoti-

cally unbiased. When τ is mis-specified, one possibly loses the asymptotic un-
biasedness. However, as illustrated in Section 4, in that case the estimators still
perform quite well with respect to bias and they outperform estimators which
are not corrected for bias. Note that our result in Corollary 4 is a pointwise
weak convergence result. This could be extended to finite dimensional con-
vergence, though this does not yield interesting additional insights. Obtaining
weak convergence results for the stochastic process

√
m(L̂m(x, y)−L(x, y)) is

in our context very complicated as we do not have an explicit estimator for
δ0. This will though be the subject of future research.

4 Simulation study

In this section, we illustrate the finite sample properties of our robust and
bias-corrected estimator L̂m(x, y) through a simulation study. Using the ho-
mogeneity property, we consider only the estimation of L(t, 1−t) for t ∈ (0, 1),
corresponding to the Pickands dependence function, and the following distri-
butions:
• the symmetric logistic model, for which L(x, y) = (x1/s + y1/s)s. We set
s = 1/2;
• the bivariate Pareto of type II model, called BPII(p), for which L(x, y) =
x+ y − (x−p + y−p)−1/p. We set p = 3 and 4;
• the Cauchy distribution, for which L(x, y) = (x2 + y2)1/2.
These distributions have already been considered in Fougères et al. (2015).
They have shown in particular that they satisfy their second order condition.
Since the latter implies our model (3), these distributions also satisfy our
model. Note that other types of distributions have been studied but since the
results are similar to those included we omit them, in order to keep the length
of the paper under control.

For each pair (Xi, Yi), i = 1, ..., n, independently from one of these dis-
tributions, we transform the margins into unit Pareto using the empirical
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distribution functions. Then, we minimize the empirical density power diver-
gence ∆̂α(δ1−ω, τ) after replacing τ by 1, which can be the true value or a
mis-specified one depending on the distribution, or by the external estimator
τ̂k introduced in Beirlant et al. (2016):

τ̂k(x, y) :=

(
1

log r
log

∣∣∣∣∣∆k,a(rx, ry)

∆k,a(x, y)

∣∣∣∣∣− 1

)
∨ 0 (12)

where

∆k,a(x, y) := a−1Ľk(ax, ay)− Ľk(x, y)

with

Ľk(x, y) :=
1

k

k∑
j=1

a−1j K(aj)L̃k(ajx, ajy)

and aj := j

k+1
and K a kernel such that

∫ 1

0
K(u)u−

1
2 du < ∞. According

to Proposition 1 in Beirlant et al. (2016), this estimator τ̂k(x, y) satisfies the

condition
√
kq1(k/n)(τ̂ − τ) = OP(1) required by our Theorem 3. Moreover as

advocated in Beirlant et al. (2016), we use for a and r the value 0.4 and K is
taken as the power kernel K(t) := 6 t51l{t∈(0,1)}. Concerning k, an extensive
simulation study involving different percentages of contamination, different
types of distributions and sample sizes, indicates that k = n/2 performs quite
well in all the contexts. Thus, these values for a, r,K and k are those used
throughout the paper. However, to avoid instabilities in the computation of our
robust estimator of L due to the fact that τ̂k(x, y) can be too close to 0, we set
τ̂k(x, y) at 0.3 if τ̂k(x, y) ∈ [0, 0.3] and at its definition (12) otherwise. Similar
proposals where second order rate parameters are bounded away from zero
have already been used, for instance in Beirlant et al. (1999) in the univariate
framework or Beirlant et al. (2016) in the multivariate setting. Finally, since
any stable tail dependence function satisfies max(x, y) ≤ L(x, y) ≤ x+ y, this
constraint has been imposed on all the estimators.

Concerning the contamination, we use the following algorithm, applied to
each of the above mentioned distributions:
• We simulate n pairs (Xi, Yi), i = 1, ..., n, independently with unit Fréchet
margins;
• We draw two lines both with origin the point (X990,n, Y990,n) and to the
points (Xn,n, Yj) and (Xk, Yn,n), respectively, where j and k correspond to
the indices associated to the maximum of the other component (note that the
point (X990,n, Y990,n) is still in the main cloud, see Figure 2 for an illustration).
We put bn0/2c := b(nε)/2c variables on each of these lines, according to a
Fréchet distribution. Our contaminated sample has a size n∗ = n+ n0;
•We transform the margins of the contaminated sample empirically (with the
ranks) into unit Pareto;
• We apply our MDPD criterion on the relative excesses.
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Fig. 2 Procedure of contamination

This procedure of contam-
ination is illustrated in Figure
2, where the non-contaminated
sample of 1000 pairs is rep-
resented as circles whereas
the contaminated pairs are
represented as crosses. Here,
the percentage of contamina-
tion is 5%. This scatterplot
is obtained after the empirical
transformation of the margins
into unit Pareto distributions.
Thus this sample is the one on
which our MDPD criterion will
be applied.

The percentage of contamination is set to ε = 0% and 5%, while n = 1000
and the procedure is repeated 500 times. Two positions have been consid-
ered: (x, y) = (0.5, 0.5) and (x, y) = (0.4, 0.6). Note that other percentages of
contamination have been used, and, as expected, increasing the percentage of
contamination deteriorates all the estimators but it increases the superiority
of our estimator compared to the other ones in particular in terms of MSE.
Again, to keep the length of the paper reasonable, they are omitted. All the
simulations have been done with Fortran and the NAG library. The code is
available upon request from the authors.

First, we investigate the impact of the choice of the parameter α and of
estimating externally the second order parameter τ by (12) rather than fixing
it at the value one. We refer to the figures included in the supplementary
material for the results of a simulation involving different values of α and
where τ was either estimated or fixed at the value one. It is clear from the
simulations that a value of α less than one should be used, since the difference
between our estimators as a function of α is rather small for α less than 1 in
both cases, τ estimated or fixed, whereas increasing its value leads to results
which are again acceptable but worse than those obtained for α ≤ 1. This
was also suggested in the original Basu et al. (1998) paper and more recently
in papers devoted to this topic. A careful study of the figures provided in
the supplementary material indicates however that, in case τ estimated or
fixed, α = 0.25 seems to be close to the best value, especially with respect to
the MSE, although the differences between the values of α are rather small.
Concerning the influence of estimating τ , except for the BPII(4) distribution,
it is clear from all the other figures that using a fixed value for τ is the best
approach, even if this fixed value is not the true one. Indeed, in general in that
context, the bias is reduced and also the MSEs are smaller and more stable for
a long range of values of m. The fact that this is not the case for the BPII(4)
(which has τ0 = 1/2) is probably due to the proximity between the true value
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τ0 and the lower bound (0.3) imposed to avoid the instabilities. At first sight,
the worse results obtained by estimating τ compared to mis-specifying it, can
appear a bit surprising, but this has already been observed in the literature
where also τ is often set at the value one (see e.g. Feuerverger and Hall, 1999)
and is due, in our context, to the fact that our estimator τ̂k(x, y) defined in
(12) is not robust (see also Figure 8 in Dierckx et al., 2013). Recall that the
first paper dealing with the estimation of the second order parameter τ in
the multivariate framework is due to Fougères et al. (2015), and even in the
univariate context where this topic has been extensively studied, no robust
estimator exists. In the sequel, we pursue the simulations with τ fixed at the
value 1 and also we keep α at the value 0.25.

In order to evaluate the performance of our robust and bias-corrected esti-
mator L̂m(x, y), we compare it with four other estimators already introduced
in the literature:
• the empirical estimator L̃m(x, y);

• the bias-corrected estimator L̃m,0.4,990(x, y) proposed by Fougères et al.
(2015):

L̃m,0.4,990(x, y) :=
L̃m(x, y)∆̃990,0.4(0.4x, 0.4y)− L̃m(0.4x, 0.4y)∆̃990,0.4(x, y)

∆̃990,0.4(0.4x, 0.4y)− 0.4∆̃990,0.4(x, y)

where

∆̃990,0.4(x, y) := 0.4−1L̃990(0.4x, 0.4y)− L̃990(x, y);

• the aggregated estimator L̃agg(x, y) proposed by Fougères et al. (2015):

L̃agg(x, y) := Median(L̃m,0.4,990(x, y),m = 1, ..., κn),

where κn is an appropriate fraction of n. Here we use κn = bn(1− ε)c which
is the upper value for this parameter in case of contamination as outlined in
Remark 11 in Fougères et al. (2015);
• the bias-corrected estimator proposed by Beirlant et al. (2016):

Lm,990(x, y) :=
Ľm(x, y)−

(
m
990

)τ̂990(x,y)
α̌990(x, y) 1

m

∑m
j=1K(aj)a

τ̂990(x,y)
j

1
m

∑m
j=1K(aj)

where

α̌990(x, y) :=

∑990
j=1

∑990
`=1

(
a
τ̂990(x,y)
j − aτ̂990(x,y)`

)
a−1j L̃990(ajx, ajy)∑990

j=1

∑990
`=1 a

τ̂990(x,y)
j

(
a
τ̂990(x,y)
j − aτ̂990(x,y)`

) .

Note that in fact Fougères et al. (2015) have proposed two bias-corrected
estimators for L(x, y) but we show here only the best one and its aggregated
version. The results are displayed in Figure 3 for 0% of contamination and in
Figure 4 for 5% of contamination. Again (x, y) = (0.5, 0.5) in these two figures.

We can observe that in the presence of contamination, our estimator L̂m(x, y)
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is always the best one in terms of bias and MSE, whatever the distribution.
This is obviously expected since it is the only estimator which is robust, the
other ones being very poor in that context. In case of no contamination, as
illustrated in Figure 3, our robust and bias-corrected estimator L̂m(x, y) still

performs quite well, always better than the empirical one L̃m(x, y) and often

similarly to Lm,990(x, y). Also note that in that context, L̃m,0.4,990(x, y) has
nice performance in terms of bias, but is worse than the others in terms of
MSE. This is also the case of the aggregated version L̃agg(x, y), the latter being
almost perfect in case of the Cauchy distribution in terms of bias. Moreover,
unlike the estimators proposed by Fougères et al. (2015), Lm,990(x, y) and our

bias-corrected and robust estimator L̂m(x, y) have very smooth sample paths.
Finally, in Figure 5, we consider another position, (0.4, 0.6), again for the

Logistic and BPII(3) distributions with τ = 1 and 0% and 5% of contami-
nation. In that context, the estimation is slightly more difficult than in case
x = y with a reduced stable part of the mean and the MSE, but again the
influence of α is rather small, the value of α = 0.25 being again the best one.

5 Conclusions and future research

In this paper we introduced a robust and bias-corrected estimator for the stable
tail dependence function in extreme value theory, and studied its weak con-
vergence under some suitable regularity conditions. We evaluated our method
by means of some simulations, involving both uncontaminated and contami-
nated samples, and learned that the estimator is very competitive with recent
alternatives from the extreme value literature.

One possibility for future research could be the study of estimators for
second order parameters in multivariate extreme value statistics. Unlike the
univariate context, where several well working estimators are available, this
area is highly unexplored in the multivariate context. Indeed, we are only
aware of the recent proposals by Fougères et al. (2015) and Beirlant et al.
(2016), though these estimators are not robust against outliers. Other possible
topics are the extension of the methodology to the case where covariates are
available and goodness-of-fit tests.

6 Appendix: Proofs

Proof of Theorem 2. Recall that 1/m
∑m
j=1(Z̃1−ω,n−j+1,n/Z̃1−ω,n−m,n)s

can be rewritten as
∫ 1

0
(Qn(t)/Qn(1))sdt. Thus the main argument to prove

Theorem 2 is to use the representation

Qn(t) =
n

k

c1−ω

t

1 +
1

t
√
m
W

(
t

c1−ω

)
+

λ
√
m

(
t

c1−ω

)τ
ξ1−ω − 1

τ
+ oP

(
t−( 1

2
+ε)

√
m

)(13)
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which follows from Theorem 1. To this aim, we use a Taylor expansion of
the integrand and thus we need that all the terms appearing in the square
parenthesis in (13) tend to 0 uniformly. To reach this goal we have to split
the integrals into two parts, from 0 to m−κ and from m−κ to 1, for a suitable
κ ∈ (0, 1/(1 + 2ε)).

Assuming κ > 1/2, we clearly have
∫m−κ

0

(
Qn(t)
Qn(1)

)s
dt = oP(1/

√
m). Also,

for ε < 0.5

∫ 1

m−κ

(
Qn(t)

Qn(1)

)s
dt =

∫ 1

m−κ
t−sdt+

s
√
m

∫ 1

m−κ
t−s

[
1

t
W

(
t

c1−ω

)
−W

(
1

c1−ω

)]
dt

+
λs
√
m

ξ1−ω

cτ1−ω

∫ 1

m−κ
t−s

tτ − 1

τ
dt+

oP(1)
√
m

∫ 1

m−κ
t−s−

1
2
−εdt+ oP

(
1
√
m

)

=

∫ 1

0
t−sdt+

s
√
m

∫ 1

0
t−s

[
1

t
W

(
t

c1−ω

)
−W

(
1

c1−ω

)]
dt

+
λs
√
m

ξ1−ω

cτ1−ω

∫ 1

0
t−s

tτ − 1

τ
dt+

oP(1)
√
m

∫ 1

0
t−s−

1
2
−εdt+ oP

(
1
√
m

)

from which Theorem 2 follows.

Proof of Theorem 3. The expression of AQ follows from Theorem 1.
Below we give the details about the proof which leads to Aτ0 . Concerning
Aτ̃ and Aτ̂ , the proofs are similar. Thus we will limit ourselves to the main
differences.

Recall that ∂∆̂α(δ1−ω,τ0)
∂δ1−ω

∣∣∣
δ1−ω=δ̂1−ω

= 0 by definition. Thus a Taylor series

expansion around δ0 combined with the boundedness of the third derivative
of ∆̂α(δ1−ω, τ0) with respect to δ1−ω leads to

0 =
∂∆̂α(δ1−ω, τ0)

∂δ1−ω

∣∣∣∣∣
δ1−ω=δ0

+
∂2∆̂α(δ1−ω, τ0)

∂δ21−ω

∣∣∣∣∣
δ1−ω=δ0

(δ̂1−ω − δ0)(1 + oP(1))

from which we deduce that

√
m(δ̂1−ω − δ0) = −

∂2∆̂α(δ1−ω , τ0)

∂δ21−ω

∣∣∣∣∣
δ1−ω=δ0

−1

√
m
∂∆̂α(δ1−ω , τ0)

∂δ1−ω

∣∣∣∣∣
δ1−ω=δ0

(1 + oP(1)).(14)
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Since we only need the dominant term of the second derivative, it is sufficient
to compute it at δ1−ω = 0. Doing so, we obtain

∂2∆̂α(δ1−ω, τ0)

∂δ21−ω

∣∣∣∣∣
δ1−ω=0

= 2(1 + α)(3 + 2α)

∫ ∞
1

y−2(1+α)(1− y−τ0)2dy

−4(1 + α)2
∫ ∞
1

y−2(1+α)(1− y−τ0)(1− (1− τ0)y−τ0)dy

+α(1 + α)

∫ ∞
1

y−2(1+α)(1− (1− τ0)y−τ0)2dy

−2(α+ 1)(2α+ 1)
1

m

m∑
j=1

E−2αj (1− E−τ0j )2

+4α(1 + α)
1

m

m∑
i=1

E−2αj (1− E−τ0j )(1− (1− τ0)E−τ0j )

−(α− 1)(1 + α)
1

m

m∑
j=1

E−2αj (1− (1− τ0)E−τ0j )2

=
τ20 (1 + α)(1 + τ0 + 2ατ0 + 4α2)

(1 + 2α)(1 + 2α+ τ0)(1 + 2α+ 2τ0)
(1 + oP(1)) (15)

by applying Theorem 2. Now, concerning the first derivative

∂∆̂α(δ1−ω , τ0)

∂δ1−ω

∣∣∣∣∣
δ1−ω=δ0

= −2(1 + α)

∫ ∞
1

y−2(1+α)(1− y−τ0 )(1 + δ0(1− y−τ0 ))−3−2α(1 + δ0(1− (1− τ0)y−τ0 ))1+αdy

+(1 + α)

∫ ∞
1

y−2(1+α)(1− (1− τ0)y−τ0 )(1 + δ0(1− y−τ0 ))−2(1+α)(1 + δ0(1− (1− τ0)y−τ0 ))αdy

+2(1 + α)
1

m

m∑
j=1

E−2α
j (1− E−τ0j )(1 + δ0(1− E−τ0j ))−1−2α(1 + δ0(1− (1− τ0)E−τ0j ))α

−(1 + α)
1

m

m∑
j=1

E−2α
j (1− (1− τ0)E−τ0j )(1 + δ0(1− E−τ0j ))−2α(1 + δ0(1− (1− τ0)E−τ0j ))α−1

= −
2α(1 + α)
√
m

∫ 1

0
t2α

[
1

t
W

(
t

c1−ω

)
−W

(
1

c1−ω

)]
dt

+
(1 + α)(2α+ τ0)(1 + τ0)

√
m

∫ 1

0
t2α+τ0

[
1

t
W

(
t

c1−ω

)
−W

(
1

c1−ω

)]
dt

−q1
(
k

n

)
ξ1−ω

cτ01−ω

τ0(1 + α)(1 + τ0 + 2ατ0 + 4α2)

(1 + 2α)(1 + 2α+ τ0)(1 + 2α+ 2τ0)

+δ0
τ20 (1 + α)(1 + τ0 + 2ατ0 + 4α2)

(1 + 2α)(1 + 2α+ τ0)(1 + 2α+ 2τ0)
+OP(δ20) + oP

(
1
√
m

)
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by again an application of Theorem 2 and using expansions of the integrands.
Now recall that

δ0 = δ0(Z̃1−ω,n−m,n) = δ

(
1

Z̃1−ω,n−m,n
,

1− ω
ω

1

Z̃1−ω,n−m,n

)
by (6)

= ξ

(
1,

1− ω
ω

)
δ

(
1

Z̃1−ω,n−m,n
,

1

Z̃1−ω,n−m,n

)
(1 + oP(1)) by (4)

=
ξ1−ω

τ0
q1

(
1

Z̃1−ω,n−m,n

)
(1 + oP(1)) by (11)

=
ξ1−ω

τ0

1

cτ01−ω
q1

(
k

n

)
(1 + oP(1)),

using the regularly varying property of q1 and Theorem 1. Consequently

∂∆̂α(δ1−ω , τ0)

∂δ1−ω

∣∣∣∣∣
δ1−ω=δ0

= −
2α(1 + α)
√
m

∫ 1

0
t2α

[
1

t
W

(
t

c1−ω

)
−W

(
1

c1−ω

)]
dt

+
(1 + α)(2α+ τ0)(1 + τ0)

√
m

∫ 1

0
t2α+τ0

[
1

t
W

(
t

c1−ω

)
−W

(
1

c1−ω

)]
dt

+oP

(
1
√
m

)
. (16)

Combining (13) and (14) with (15) and (16) yields the expression of Aτ0 .

Now, concerning Aτ̃ , the limit in probability of the second derivative is the
same as in (15) with τ0 replaced by τ̃ . For the first derivative, similar argu-
ments as for (16) lead to

∂∆̂α(δ1−ω, τ̃)

∂δ1−ω

∣∣∣∣∣
δ1−ω=δ0

= −2α(1 + α)√
m

∫ 1

0

t2α
[

1

t
W

(
t

c1−ω

)
−W

(
1

c1−ω

)]
dt

+
(1 + α)(2α+ τ̃)(1 + τ̃)√

m

∫ 1

0

t2α+τ̃
[

1

t
W

(
t

c1−ω

)
−W

(
1

c1−ω

)]
dt

+q1

(
k

n

)
ξ1−ω
cτ01−ω

[
2α(1 + α)

(1 + 2α)(1 + 2α+ τ0)
− (1 + α)(2α+ τ̃)(1 + τ̃)

(1 + 2α+ τ̃)(1 + 2α+ τ0 + τ̃)

+
τ̃2(1 + α)(1 + τ̃ + 2ατ̃ + 4α2)

τ0(1 + 2α)(1 + 2α+ τ̃)(1 + 2α+ 2τ̃)

]
+oP

(
1√
m

)
which leads to the expression of Aτ̃ .

Finally, concerning Aτ̂ , the limit in probability of the second derivative
is again the same as in (15) since τ̂ is a consistent estimator of τ . For the
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first derivative, similar arguments as for (16), combined with the mean value
theorem, lead to

∂∆̂α(δ1−ω, τ̂)

∂δ1−ω

∣∣∣∣∣
δ1−ω=δ0

= −2α(1 + α)√
m

∫ 1

0

t2α
[

1

t
W

(
t

c1−ω

)
−W

(
1

c1−ω

)]
dt

+
(1 + α)(2α+ τ0)(1 + τ0)√

m

∫ 1

0

t2α+τ0
[

1

t
W

(
t

c1−ω

)
−W

(
1

c1−ω

)]
dt

+oP

(
1√
m

)
+OP

(
1√

kq1( kn )

)
.

Using our assumption on the intermediate sequence k, the expression of Aτ̂
follows.

Proof of Corollary 4. Note that

√
m
(
L̂m(x, y)− L(x, y)

)
= −x

√
m
(
K̂1−ω,m −K1−ω

)
. (17)

Consequently, we have to look at

√
m
(
K̂1−ω,m −K1−ω

)
=
√
m

(
m

k

k
nQn(1)

1 + δ̂1−ω
−K1−ω

)

=
√
m

1 + δ0

1 + δ̂1−ω

m

k

(
k
nQn(1)− c1−ω

1 + δ0
− k

m

[
1 +

δ̂1−ω − δ0
1 + δ0

]
K1−ω +

c1−ω
1 + δ0

)

=
√
m

(
k

n
Qn(1)− c1−ω

)
`(1 + oP(1))−

√
m
(
δ̂1−ω − δ0

)
K1−ω(1 + oP(1))

−
√
m

(
K1−ω −

m

k

c1−ω
1 + δ0

)
(1 + oP(1)). (18)

We have the joint distribution of the two first terms, so we only have to look
at the last one. Recall that, by definition (see (6))

K1−ω =

(
1− ω
ω

)d2
g

(
1,

1− ω
ω

)
.

Now using (11), we have

c

(
1

x
,

1− ω
ω

1

x

)
= x−1

(
1− ω
ω

)d2 g ( 1x , 1−ωω 1
x

)
g(1, 1)

= x−1
(

1− ω
ω

)d2 g (1, 1−ωω )
g(1, 1)

by homogeneity of order 0 of g. This implies that

K1−ω = g(1, 1)x c

(
1

x
,

1− ω
ω

1

x

)
= g(1, 1) c1−ω, (19)
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by homogeneity of order 1 of c. Now recall that k
n = q←

(
m
n

)
, i.e.

m

k
=
n

k
P
(

1− FX(X) <
k

n
, 1− FY (Y ) <

k

n

)
= g(1, 1)

(
1 + δ

(
k

n
,
k

n

))
by (3) with η = 1 and homogeneity of g.(20)

Combining (19) and (20), the quantity of interest can be rewritten as

√
m

(
K1−ω −

m

k

c1−ω
1 + δ0

)
= g(1, 1)c1−ω

√
m

(
1−

1 + δ
(
k
n ,

k
n

)
1 + δ0

)

= g(1, 1)c1−ω
√
m

(
δ0 − δ

(
k

n
,
k

n

))
+ oP(1)

= K1−ω
√
mq1

(
k

n

)
c−τ01−ωξ1−ω − 1

τ0
+ oP(1) (21)

by (11) and using the facts that δ0 = c−τ01−ωξ1−ω
1
τ0
q1
(
k
n

)
(1 + oP(1)) and√

mq1(k/n)→ λ ∈ R.
Finally combining (17), (18) and (21) with our Theorem 3, Corollary 4 follows.
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Fig. 3 Comparison between our robust and bias-corrected estimator L̂m(0.5, 0.5) with

(α, τ) = (0.25, 1) (full line) and the empirical estimator L̃m(0.5, 0.5) (dotted line), the

bias-corrected estimators L̃m,0.4,990(0.5, 0.5) (dashed-dotted line), L̃agg(x, y) (horizontal

dashed-dotted line) and Lm,990(0.5, 0.5) (dashed line) in case of 0% of contamination. First
row: Logistic; Second row: BPII(3); Third row: Cauchy; Fourth row: BPII(4) distributions.
On the left: mean and on the right: MSE based on 500 replications. The full horizontal line
on the left is the true value of the parameter.
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Fig. 4 Comparison between our robust and bias-corrected estimator L̂m(0.5, 0.5) with

(α, τ) = (0.25, 1) (full line) and the empirical estimator L̃m(0.5, 0.5) (dotted line), the

bias-corrected estimators L̃m,0.4,990(0.5, 0.5) (dashed-dotted line), L̃agg(x, y) (horizontal

dashed-dotted line) and Lm,990(0.5, 0.5) (dashed line) in case of 5% of contamination. First
row: Logistic; Second row: BPII(3); Third row: Cauchy; Fourth row: BPII(4) distributions.
On the left: mean and on the right: MSE based on 500 replications. The full horizontal line
on the left is the true value of the parameter.



24 Mikael Escobar-Bach et al.

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

m

L

0 200 400 600 800 1000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

m

M
S

E

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

m

L

0 200 400 600 800 1000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

m

M
S

E

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

m

L

0 200 400 600 800 1000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

m

M
S

E

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

m

L

0 200 400 600 800 1000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

m

M
S

E

Fig. 5 Comparison between our robust and bias-corrected estimator L̂m(0.4, 0.6) with α =
0.25 (full line), 0.5 (dashed line) and 1 (dotted line). Here τ = 1. Logistic distribution
with 0% of contamination (first row), 5% (second row) and BPII(3) distribution with 0% of
contamination (third row), 5% (fourth row). On the left: mean and on the right: MSE based
on 500 replications. The full horizontal line on the left is the true value of the parameter.


