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Sample Applications

e (Gene Expression Analysis

Data:

- EXxpression level of genes under

different samples such as

= different individuals (patients)
= different time dots after treatment

= different tissues

= different experimental environments

- Data matrix:

genes

(usually <
several

thousands)
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Sample Applications

o Task 1: Cluster the rows (i.e. genes) to find groups of genes with similar
expression profilesindicating homogeneous functions

- Challenge:
genes usually have
different functions
under varying
(combinations of) conditions

Genel
Gene2
Gene3
Gene4
Geneb
Gene6
Gene7
Gene8
Gene9

Cluster 1: {G1, G2, G6, G8}

Cluster 2: {G4, G5, G6}

Cluster 3: {G5, G6, G7, G9}
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o Task 2: Cluster the columns (e.g. patients) to find groups with similar
expression profiles indicating homogeneous phenotypes

- Challenge:
different phenotypes
depend on different
(combinations of)
subsets of genes
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E Cluster 3: {P2, P4, P8, P10}




Sample Applications

 Metabolic Screenin
3-Keto-3'-deox-ATP
N6 N6, O-Trideme thyl-
&ATP O—] purlo -#0—{ pPw? [-w0O—| Pud O puhimyeineS - phosghate
° D ata I-Ketn-3-deoxy-AMP

3 Amino-3'-deoxy-AMP

Tyrosine

Concentration of different metabolites

& N-dsetl-Né, N6, O-uidemethyl-

Phenyla.la.mne Tyrosine a.w:l pummycm 5. phosphate

In the blood of different test persons G
- Example: copmsn | S R
] . PuromycinC#—| Napt |—O#—{211 5] —O%— Pus |- Fus e o
Bavarian Newborn Screening e
- Data matrix:
metabolites (usually ten to hundreds)
N
4 Y
p
test persons - ~
(usually several < .
thousands) \ concentration of
the ith metabolite
L in the blood of the

jth test person



Sample Applications

o Task: Cluster test personsto find groups of individuals with similar
correlation among the concentrations of metabolites indicating homogeneous
metabolic behavior (e.g. disorder)

- Challenge:

different metabolic disorders appear through different correlations of
(subsets of ) metabolites
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General Problems & Challenges

The“ curse of dimensionality” : one buzzword for many problems

o First aspect: Optimization Problem (Bellman).

“[The] curse of dimensionality [ ... i1s] a malediction that has plagued the
scientists from earliest days.” [Bel61]

« Thedifficulty of any global optimization approach increases exponentially
with an increasing number of variables (dimensions).

» General relation to clustering: fitting of functions (each function explaining
one cluster) becomes more difficult with more degrees of freedom.
» Direct relation to subspace clustering: number of possible subspaces

Increases dramatically with increasing number of dimensions.



General Problems & Challenges

« Second aspect: Concentration effect of L -norms

* In[BGRS99,HAKOOQ] it isreported that the ratio of (Dmax,— Dminy) to
Dmin, converges to zero with increasing dimensionality d

- Dminy = distance to the nearest neighbor in d dimensions
- Dmax = distance to the farthest neighbor in d dimensions

Formally:

Ve>0:lmg_ P{distdEDmagd — bmin, ,Oj < 5} =1
min,

- Thisholdstrue for awide range of data distributions and distance
functions



General Problems & Challenges

1 2 3 4 5 6 7 8 9 10 10 20 30 40 50 60 70 80 90 100
dimension dimension

(@) (b)

From bottom to top: minimum observed value, average minus standard deviation, average value, average plus standard deviation,
maximum observed value, and maximum possible value of the Euclidean norm of a random vector. The expectation grows, but the
variance remains constant. A small subinterval of the domain of the norm is reached in practice. (Figure and caption: [FWV07])

» Theobservations stated in [BGRS99,HAKO0Q] are valid within clusters but

not between different clusters aslong as the clusters are well separated
[BFG99,FWV07,HKK+10].

« Thisisnot the main problem for subspace clustering, although it should be

kept in mind for range queries. 10



General Problems & Challenges

e Third aspect: Relevant and Irrelevant attributes
* A subset of the features may be relevant for clustering

o Groupsof smilar (“dense”) points may be identified when considering these
features only

irrelevant attribute

relevant attribute/
relevant subspace

» Different subsets of attributes may be relevant for different clusters

11



General Problems & Challenges

» Effect on clustering:
- Usually the distance functions used give equal weight to all dimensions
- However, not al dimensions are of equal importance

- Adding irrelevant dimensions ruins any clustering based on a distance
function that equally weights all dimensions
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General Problems & Challenges

different attributes are relevant for different clusters

again
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General Problems & Challenges

« Fourth aspect: Correlation among attributes
* A subset of features may be correlated

o Groupsof similar (“dense”) points may be identified when considering this
correlation of features only

\ 4

» Different correlations of attributes may be relevant for different clusters

14



General Problems & Challenges

* Why not feature selection?
e (Unsupervised) feature selectionis global (e.g. PCA)

 Wefacealocal feature relevance/correlation: some features (or combinations
of them) may be relevant for one cluster, but may be irrelevant for a second
one

15



General Problems & Challenges

» Usefeature selection before clustering
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General Problems & Challenges

o Cluster first and then apply PCA
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General Problems & Challenges

e Problem Summary

» Curse of dimensionality/Feature relevance and correlation
- Usually, no clustersin the full dimensional space

- Often, clusters are hidden in subspaces of the data, i.e. only a subset of features
Isrelevant for the clustering

- E.g. agene playsacertain role in asubset of experimental conditions

e Locd feature relevance/correlation

- For each cluster, a different subset of features or a different correlation of
features may be relevant

- E.g. different genes are responsible for different phenotypes
* Overlapping clusters

- Clusters may overlap, i.e. an object may be clustered differently in varying
subspaces

- E.g. agene plays different functional roles depending on the environment

18



General Problems & Challenges

» General problem setting of clustering high dimensional data

Search for clustersin
(in general arbitrarily oriented) subspaces
of the original feature space

« Challenges:

» Find the correct subspace of each cluster
- Search space:
= all possible arbitrarily oriented subspaces of afeature space
= infinite
» Find the correct cluster in each relevant subspace
- Search space:
= “Best” partitioning of points (see: minimal cut of the similarity graph)
= NP-complete [SCH75]

19



General Problems & Challenges

 Evenworse: Circular Dependency
» Both challenges depend on each other

* |Inorder to determine the correct subspace of a cluster, we need to know (at
|east some) cluster members

* Inorder to determine the correct cluster memberships, we need to know the
subspaces of all clusters

* How to solvethe circular dependency problem?

* Integrate subspace search into the clustering process

e Thus, we need heuristicsto solve
- the clustering problem
- the subspace search problem

simultaneously

20



General Problems & Challenges

Solution: integrate variance / covariance analysis into the clustering

process

* Variance analysis:
- Find clusters in axis-parallel subspaces

- Cluster members exhibit low variance
aong the relevant dimensions ‘

» Covariance/correlation analysis:

- Find clustersin arbitrarily oriented
subspaces

- Cluster members exhibit alow covariance
w.r.t. agiven combination of the relevant
dimensions (i.e. alow variance along the
dimensions of the arbitrarily oriented
subspace corresponding to the given
combination of relevant attributes)
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A First Taxonomy of Approaches

e S0 far, we can distinguish between
o Clustersin axis-parallel subspaces
(common assumption to restrict the search space)
Approaches are usually called
- “subspace clustering algorithms’ *

»
>

{

irrelevant attribute

- prOJ eCted CI USterI ng algontth” relevant attribute/
- “bi-clustering or co-clustering algorithms” eievantsubspace

e Clustersin arbitrarily oriented subspaces N

Approaches are usually called &7
- “bi-clustering or co-clustering algorithms’ \ &7
- “pattern-based clustering agorithms’ vy \*“é“

v

- “correlation clustering algorithms’ &‘%%6\

v



A First Taxonomy of Approaches

« Afirst big picture
* We have two problemsto solve

 For both problems we need heuristics that have huge influence on the

properties of the algorithms
- Subspace search

Assumptions Algorithm
(e.g. axis-parallel only) (e.g. top-down)

Assumption specific

Original search space search space

(infinite)

- Cluster search

» FINAL SUBSPACES

Cluster model Algorithm
(e.g. k-partitioning (e.g. k-Means)

clustering) »
Model specific

Original search space search space

(NP-complete)

» FINAL CLUSTERING

24



A First Taxonomy of Approaches

* Restricted on axis-parallel subspaces— what are we searching for?

» Overlapping clusters: points may be grouped differently in different
subspaces

=> “subspace clustering”
« Digoint partitioning: assign points uniquely to clusters (or noise)
=> “projected clustering”
Notes:

* Theterms subspace clustering and projected clustering are not (yet) used in
aunified or consistent way in the literature
» These two problem definitions are products of the presented algorithms:

- Thefirst “projected clustering algorithm” integrates a distance function
accounting for clustersin subspacesinto a“flat” clustering algorithm (k-medoid)
=> DISJOINT PARTITION

- Thefirst “subspace clustering algorithm” is an application of the APRIORI
algorithm => ALL CLUSTERSIN ALL SUBSPACES

25



A First Taxonomy of Approaches

* Restricted on axis-parallel subspaces— how are we searching?

« Basically, there are two different ways to efficiently navigate
through the search space of possible subspaces

Bottom-up:
If the cluster criterion implements the downward closure, one can use any
bottom-up frequent itemset mining algorithm (e.g. APRIORI [AS94])
Key: downward-closure property OR merging-procedure
Example approaches.
[AGGR98, CFZ99, NGCO01, KKK04, KKRWO05, MSEO06, ABK+074]

Top-down:

The search starts in the full d-dimensional space and iteratively learns for
each point or each cluster the correct subspace

Key: procedure to learn the correct subspace

Example approaches. [APW+99, BKKK04, FM04, WLKL04]

26



Taxonomy: Bottom-up Algorithms

e Rational:

o Start with 1-dimensional subspaces and merge them to compute higher
dimensional ones

* Most approaches transfer the problem of subspace search into frequent
Item set mining
- The cluster criterion must implement the downward closure property

= |f the criterion holds for any k-dimensional subspace S then it also holds for any
(k=1)-dimensional projection of S

= Usethereverseimplication for pruning:
If the criterion does not hold for a (k—1)-dimensional projection of S, then the

- Apply any frequent itemset mining algorithm (e.g. APRIORI)
» Some approaches use other search heuristics like best-first-search, greedy-
search, etc.
- Better average and worst-case performance

- No guaranty on the completeness of results

27



Taxonomy: Bottom-up Algorithms

e Downward-closure property

If Cisadense set of pointsin subspace S,
then C isalso adense set of pointsinany subspace T < S

Ay MinPts = 4 At
£
Og0000 O [
NN B B
p and g density-connected in { A,B}, { A} and { B} p and g not density-connected in { B} and { A,B}
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Taxonomy: Bottom-up Algorithms

e Downward-closure property

the reverse implication does not hold necessarily
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A2 §° oo
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o
..
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Taxonomy: Top-down Algorithms

The key problem: How should we learn the subspace preference of
acluster or apoint?
» Most approachesrely on a“locality assumption”

- The subspace is usually learned from the local neighborhood of cluster
representatives/cluster membersin the entire feature space:

» Cluster-based approach: the local neighborhood of each cluster representative is
evaluated in the d-dimensional space to learn the “correct” subspace of the cluster

» |nstance-based approach: the local neighborhood of each point is evaluated in the d-
dimensional space to learn the “correct” subspace preference of each point

- Thelocality assumption: the subspace preference can be learned from the
local neighborhood in the d-dimensional space

» Other approaches learn the subspace preference of a cluster or a point from
randomly sampled points

30



Taxonomy: Top-down Algorithms

e Example:

» |earn weights based on attribute wise variances for a weighted Euclidean

distance function

dist,(p,q) =\/Zwi (P-0)" wrt.p

« Caveat: ensure symmetry, e.g. 1
dist(p,q) = max {dist,(p,q), dist,(q.p)}

v

31



A First Taxonomy of Approaches

Pattern-based clustering relies on patterns in the data matrix.

« Simultaneous clustering of rows and columns of the data matrix
(hence biclustering).
o Datamatrix A = (X,Y) with set of rows X and set of columns'Y
* a, Istheelementinrow x and columny.

« submatrix A,; = (1,J) with subset of rows | < X and subset of columnsJc Y
contains those elements a;; withi e lund | € J

Y
Ayy Y - J={yj}

g

X7 X : A

™~

32



A First Taxonomy of Approaches

Genera am of biclustering approaches:
Find a set of submatrices {(l,,J,),(1,,J,),---,(I,,J,)} Of the matrix
A=(X)Y) (withl; c Xand J. c Yfori =1,...,k) where each
submatrix (= bicluster) meets a given homogeneity criterion.

Sounds similar to subspace clustering but:
the homogeneity criterion is completely different!

33



A First Taxonomy of Approaches

most common model (following Cheng & Church [CCO0Q]):
biclusters with coherent values

» based on aparticular form of covariance between rows and
columns

a, = [+ +C, H
Viel,jeJ

e gpecial cases.
* ¢ =0foralj - constant values on rows
e r,=0foral i - constant values on columns




A First Taxonomy of Approaches

embedding space: sparse hyperplane parallel to axes of irrelevant

attributes N J 2
B o { 6 *
al a2 a3 . i "
P 1 2 | 35 4 i
F 2 3 4.3 - 3 .
2—---| 24 m
P4 5 B 07 1 - 1
g a1
2 5 4 5 6
value
subspace: increasing one-dimensional line 4
pattern (parallel coordinates-plot): °7
. e
paralel lines A S
- P1
P2
2
1 P4
P3 - attribute




A First Taxonomy of Approaches

» Pattern-based approaches find ssimple positive correlations

e negative correlations. no additive pattern

value

B

P2

F3

P4

m attribute
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A First Taxonomy of Approaches

e more complex correlations. out of scope of pattern-based

approaches  # _ value
i
A
al—-2a2+a3=0
5 — .
al az a3
4 _
P1 3 2 1 P
=2 4 G
=]
re | 3 | 4 5 : ?
A ! - P4
<8 : Vi P3 L attribut
I f { I T T I I > 2l ! I | - & 5
1 2 3 4 5 6 T 8 al a2 a3

* Interesting subspace is arbitrarily oriented, related to complex
correlations among attributes = Correlation Clustering
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A First Taxonomy of Approaches

val
¥

3
2 |

1

M atrix-Pattern

Constant values
in columns,
change of values

Pt only on rows
F3 attribute

ue

From constant
valuesin rows
and columns (no
y change of values)
- to arbitrary
change of values
L Y P attribute in common
" direction

P2 No particular

" pattern
é_ﬁ,, attribute

al a2 a3

Problem

Subspace / Projected
Clustering

Pattern-based / Bi-
Clustering

Correlation
Clustering

Spatial Pattern

a2
i

Axis-parallel
hyperplanes

Specia cases
of axis-paralléel .
to specia
cases of
arbitrarily
oriented
hyperplanes

Arbitrarily
oriented
hyperplanes

T T T T T T T T
1.2 3 4 5 6 7 8
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A First Taxonomy of Approaches

* Note: thistaxonomy considers only the subspace search space
 the clustering search space is equally important

 other important aspects for classifying existing approaches are e.g.
» Theunderlying cluster model that usually involves
- Input parameters
- Assumptions on number, size, and shape of clusters
- Noise (outlier) robustness
e Determinism
» Independencew.r.t. the order of objects/attributes
» Assumptions on overlap/non-overlap of clusters/subspaces
» Efficiency

Extensive survey: [KKZ09]

39
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PCA-based Approaches

Pattern-based approaches find pairwise positive correlations

More general approach: oriented clustering aka. generalized
subspace/projected clustering aka. correlation clustering
Assumption: any cluster islocated in an arbitrarily oriented affine
subspace St+a of R

<O

N
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PCA-based Approaches

« Directions of high/low variance: PCA (local application)

 locality assumption: local selection of points sufficiently reflects
the hyperplane accommodating the points

 genera approach: build covariance matrix X for a selection D of
points (e.g. k nearest neighbors of a point)

L3 (x= %) (X=X, )

‘D xeD

X5 centroid of D properties of ZD:

@ '. edxd
% @ « symmetric
)
® 9

2y =

e positive semidefinite

* Op, (valueat row I, columnj) = covariance
O between dimensionsi and |

* 0, = variancein ith dimension
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PCA-based Approaches

model for correlation clusters [ABK+06]:

o A-dimensional hyperplane accommodating the points of a
correlation cluster Cc R4 is defined by an equation system of d-A
eguations for d variables (based on the small eigenvalues \7C) and
the affinity (e.g. the mean point x- of all cluster members):

ARVEERVAI
Ve X=V, X

« eqguation system approximately fulfilled for al pointsxe C

e guantitative model for the cluster allowing for probabilistic
prediction (classification)

* Note: correlations are observable, linear dependencies are merely

an assumption to explain the observations — predictive model
allows for evaluation of assumptions and experimental refinements

43



PCA-based Approaches

» Examples of PCA based correlation clustering:
[AYO00, BKKZ04, ABK+07c, ABK+07b]

« Learning the distance top-down (similar to axis-parallel, but
covariance instead of variance):

 E.g., pandqare correlation-neighbors if

J(p-a)v,-E,-V]-(p-q),

mMaxs > < E
/ T

J@-p)v, E;v, (a-p)
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Correlation Clustering Based on the Hough-Transform

different correlation primitive: Hough-transform
« problems of PCA based approaches. locality assumption

characteristic neighborhood?

« PCA sensitivefor outliersin local
nelghborhoods

e choiceof A7

o *“locality assumption” gquestionablein view
of the “curse of dimensionality” o

46



Correlation Clustering Based on the Hough-Transform

e Hough-transform:
» developed in computer-graphics
e 2-dimensional (image procesing)
o CASH: Clustering in Arbitrary Subspaces based on the Hough-
Transform [ABD+08]
» generalization to d-dimensional spaces

» transfer of the clustering to a new space (“ Parameter-space”’ of the Hough-
transform)

 restriction of the search space
(from innumerable infinite to O(n!))

« common search heuristic for Hough-transform: O(29)
— efficient search heuristic

a7



Correlation Clustering Based on the Hough-Transform

e given: Dc R
 find linear subspaces accommodating many points

* |ldea: map points from data space (picture space) onto functionsin
parameter space
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Correlation Clustering Based on the Hough-Transform

e, 1 <i <d: orthonormal-basis

X = (Xyq,..%Xg) " d-dimensional vector onto hypersphere around the
origin with radiusr

U;: unit-vector in direction of projection of x onto subspace
span(e,....ey)
ay,...,04. 05 angle between u, and e
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Correlation Clustering Based on the Hough-Transform

Length O of the normal vector 0 - N with|fi| =1 and angles o, ..., .,
for the line through point p:

f (crerrtyy) = pun) :i 0 -[ljsin(aj )]-cos(ai)
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Correlation Clustering Based on the Hough-Transform

* Properties of the transformation

Point in the data space = sinusoidal curve in parameter space

Point in parameter space = hyper-plane in data space

Points on a common hyper-plane in data space = sinusoidal curves through a
common point in parameter space

Intersections of sinusoidal curves in parameter space = hyper-plane through the
corresponding points in data space
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Correlation Clustering Based on the Hough-Transform

47
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e exact solution: find all intersection | .
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* infeasible Al e
e toexact

d | -
« approximative solution: grid-based |
clustering in parameter space
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least m sinusoids P .
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Correlation Clustering Based on the Hough-Transform

efficient search heuristic for dense regions in parameter space

« construct agrid by recursively splitting the parameter space (best-
first-search)

 identify dense grid cells as intersected by many parametrization
functions

e densegrid cell represents (d-1)-dimensional linear structure

e transform corresponding data objects in corresponding (d-1)-
dimensional space and repeat the search recursively
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Correlation Clustering Based on the Hough-Transform

o

grid cell representing less than m points can be excluded
— early pruning of a search path

grid cell intersected by at least m sinusoids after s recursive splits
represents a correlation cluster (with A <d-1)
* remove points of the cluster (and corr. sinusoids) from remaining cells
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Correlation Clustering Based on the Hough-Transform

properties:

o findsarbitrary number of clusters

* requires specification of depth of search (number of splits per axis)
* requires minimum density threshold for agrid cell

* Note: thisminimum density does not relate to the locality
assumption: CASH is aglobal approach to correlation clustering
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Correlation Clustering Based on the Hough-Transform

 search heuristic: linear in number of points, but ~ O(d3)
depth of search s, number c of pursued paths (ideally: c cluster):

3000

2500 4

2000 4

runtime [sec]
[y
[
(]

1 000 A

500 -

priority search: O(s-C)

determination of curvesintersecting acell: O(n-d3)

overal: O(scn-dd)
(note: PCA generally in O(d3))

= CASH
l."I . ‘4:

/" -+ ORCLUS

10 20 30 40 50 60 70 80 90 100

size * 1000

1000 000 ~

100 000 -

10 000

runtime [sec]

10

1

1 000 -

100 -

I slope = 3.14
\ corresponding to O (d?)

10 100
dimensionality
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Correlation Clustering Based on the Hough-Transform

_-n‘_"l-_m
(c) 4C: Cluster 1-8 (d) ORCLUS: Cluster 1-5
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Correlation Clustering Based on the Hough-Transform

o dtability with increasing number of noise objects

100% - lllllll\.

90% -
809% - —a = CASH
70% - - 4C
809 -+ ORCLUS
50% -
A0%
30%
20%
10% \
0% — — — ——
0 10 20 30 40 50 60 70 80 €0

level of noise objects []

F-Measure [%]
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Summary and Perspectives

PCA: mature technique, allows construction of a broad range of
similarity measures for local correlation of attributes

drawback: all approaches suffer from locality assumption

successfully employing PCA in correlation clustering in “really”
high-dimensional data requires more effort henceforth

new approach based on Hough-transform:

» doesnot rely on locality assumption
 but worst case again complete enumeration
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Summary and Perspectives

e some preliminary approaches base on concept of self-similarity
(intrinsic dimensionality, fractal dimension):
[BCOO,PTTFO02,GHPTO5]

e Interesting idea, provides quite adifferent basis to grasp
correlations in addition to PCA

o drawback: self-similarity assumes |locality of patterns even by
definition
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