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Abstract—In this paper, we propose a novel outlier detec-
tion model to find outliers that deviate from the generating
mechanisms of normal instances by considering combinations
of different subsets of attributes, as they occur when there are
local correlations in the data set. Our model enables to search
for outliers in arbitrarily oriented subspaces of the original
feature space. We show how in addition to an outlier score,
our model also derives an explanation of the outlierness that
is useful in investigating the results. Our experiments suggest
that our novel method can find different outliers than existing
work and can be seen as a complement of those approaches.

I. INTRODUCTION

Outlier detection is important in many applications in-
cluding e.g. the detection of credit card abuse in financial
transactions data, the identification of measurement errors in
scientific data, or the recognition of exceptional protagonists
in athletic statistics, etc. Most of the recent work in outlier
detection refer to Hawkins’ definition of an outlier as “an
observation which deviates so much from other observations
as to arouse suspicions that it was generated by a different
mechanism” [1]. Several outlier detection schemata have
been proposed over decades differing widely in how an out-
lier is modelled and, thus, offer different features applicable
to varying scenarios. Here, we focus on the unsupervised
variant of the problem.

While in the early years of data mining, the features of
data sets were carefully selected, nowadays we are entering
the area of Big Data. There is a trend of measuring as much
parameters as possible because modern capabilities of data
generation produce data at low costs. Thus, a real world data
set usually contains several groups of observations (i.e., data
objects) that have been generated by different (typically un-
known) mechanisms or statistical processes. These different
generating mechanisms may show their effects in varying
subsets of attributes, i.e. a varying subset of features is cor-
related differently for each generating mechanism defining a
local correlation of features for the corresponding subset of
data objects generated. Typically, a mechanism is supposed
to have generated a minimum number of data objects in
order to be considered as significant. Outliers are those
objects that have not been generated by these mechanisms,
i.e. those objects that do not fit into the corresponding
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local correlations. The subset of points that show a local
correlation are located on a common ¢-dimensional hyper-
plane, where § < d and d is the dimensionality of the full-
dimensional data space. As a consequence, outliers are those
objects that are not located on those hyperplanes rather than
objects that are in a less dense area in the full-dimensional
data space. In addition, in such a scenario, the task of outlier
detection is not only to identify possible outliers but also—
in order to find outliers at all—to automatically determine
the local correlations from which objects deviate. Almost
all existing approaches for outlier detection implicitly rely
on the assumption that all features are equally relevant for
detecting outliers and do not account for local correlations
nor for determining those local correlations.

This general idea and the difference of this idea to existing
approaches is visualized in Figure 1(a). A sample 3D data
set is shown that has been generated by three mechanisms
each following a unique correlation of (a subset of) features.
Existing approaches consider the full-dimensional space and
would most likely find objects n; and n9 as outliers because
these objects deviate from all other objects significantly
when considering vicinity in the 3D space. Objects o1,
02, and o3 on the other hand would most likely not be
detected because they do not deviate from the other objects
conspicuously if the full-dimensional space is considered.
However, objects ny and no are located on one of the hy-
perplanes that represent the correlations of the corresponding
generating mechanisms and, thus, should not be seen as
outliers; these objects fit perfectly to the mechanisms that
have generated the normal instances. Rather, objects o1, 02,
and oz are outliers because they deviate considerably from
any of the hyperplanes representing the generating mecha-
nisms. We can find these outliers only when considering the
subspaces that are perpendicular to the hyperplanes of the
generating mechanisms. For example, in the subspace that
is perpendicular to the hyperplane representing mechanism
1 all objects generated by mechanism 1 (including ng) are
dense and o0y deviates considerably from those objects. Thus,
in such a scenario, existing outlier detection approaches may
incorrectly classify normal instances as outliers and may
miss true outliers because these approaches do not take any
local correlations into account.
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Figure 1. The general idea of finding outliers in subspaces of the original
feature space by projecting the data to the orthogonal subspace S.

In this paper,! we introduce an outlier model that detects
outliers as points that do not fit to any significant local corre-
lation in the data. Orthogonal to existing methods, this model
is the first approach to consider local correlations within the
outlier detection process. We simultaneously identify outliers
in arbitrarily oriented subspaces of the original feature space
and determine the relevant correlation of attributes that needs
to be considered to detect the corresponding outlier. This is
obviously beneficial in many applications, e.g. in scientific
domains where the relationship between causation and effect
can only be exploited when considering correlations among
attributes. Our new model should be seen as a complement
of the set of existing approaches rather than as a strict
rival because it computes a completely different type of
outliers under completely different assumptions. The benefit
of having quite different rationals and models to derive
outliers has been demonstrated for the construction of outlier
detection ensembles [4].

The remainder is organized as follows. We review related
work in Section II. Our novel outlier model is described
in Section III. An experimental evaluation of the proposed
method is presented in Section IV. Section V provides final
conclusions.

II. RELATED WORK

Existing unsupervised outlier detection approaches can be
classified as global or local. A global model is based on
properties compared over the complete data set assuming
one global generating mechanism underlying the normal in-
stances. A local outlier approach considers a local selection
of the data set which seems better suitable when multiple
generating mechanisms exist.

Existing outlier detecting methods differ in the way they
model and find the outliers and, thus, in the assumptions
they rely on, implicitly or explicitly. In statistics, outlier
detection is usually addressed by modelling the generating
mechanism(s) of the normal data instances using a single
or a mixture of multivariate Gaussian distribution(s) and

'This paper presents an improved version of the method COP as
discussed in [2, chap. 18]. See also the discussion in a recent survey [3].

measuring the Mahalanobis distance to the mean(s) of this
(these) distribution(s). Barnett and Lewis [5] discuss numer-
ous tests for different distributions in their classical textbook.
As a rule of thumb, objects that have a distance of more
than 3 - o to the mean of a given distribution (o denotes
the standard deviation of this distribution) are considered as
outliers to the corresponding distribution. The data mining
community developed many different approaches that have
less statistically oriented but more spatially oriented notions
to model outliers. Distance-based outlier models consider
the number of nearby objects or the distances to nearby
objects as an indication of the outlierness of an object [6]—
[11]. Angle-based outlier scores like ABOD [12] assess
the variance in angles between an outlier candidate and
all other pairs of points. Density-based approaches compare
the density of each object with the density of its neighbors
[13]-[18]. However, all these approaches rely implicitly on
the assumption that a globally fixed set of features (usually
all available attributes) are equally relevant for the outlier
detection process.

Some approaches try to account for a local feature rele-
vance and search outliers in axis-parallel subspaces of the
data space [19]-[27]. This is obviously a special case of
finding outliers in arbitrarily oriented subspaces. The most
recent of these approaches, HiCS [27], uses a Monte-Carlo
sampling approach to detect interesting feature combina-
tions, then runs an existing outlier detection method (in the
article they experiment with LOF [13], but suggest that any
other method will be usable) in each such subspace. The
feature selection is in fact global, locality is introduced by
the method used within the chosen projections. A recent
survey [3] is discussing subspace outlier detection in a
broader perspective.

So far, no outlier detection approach is considering local
correlations of attributes for outlier detection and searches
for outliers in arbitrarily oriented subspaces, analyzing the
locally relevant feature combinations only.

Outlier detection is orthogonal to clustering [28] where
the aim is to find a natural grouping of sets of similar data
objects, i.e. the generating mechanisms of a data set. In
fact, clustering algorithms have similar problems like outlier
detection approaches in the above described scenarios. Thus,
a plethora of specialized methods has been proposed for
the detection of clusters in subspaces of the data space
(see e.g. the surveys [29]-[31]), some taking into account
local correlations, e.g., [32]-[34]. Although outliers can
be seen as objects that do not fit well into any cluster,
clustering algorithms can usually not be used for outlier
detection because these algorithms search for clusters and
their corresponding subspaces rather than outliers and their
corresponding subspaces. Object that are not assigned to any
subspace cluster need not necessarily be remarkable outliers
in any of the subspaces in which the detected clusters exist.



III. OUTLIER DETECTION IN SUBSPACES
A. General Idea

In the following, we assume D C R? to be a database
of n feature vectors in a d-dimensional space generated by
several mechanisms (i.e. statistical processes). Data objects
from the same generating mechanism are assumed to show
a similar correlation among some attributes such that they
are located on a common ¢-dimensional (§ < d) hyperplane,
hereafter also called correlation hyperplane. The basic idea
of our approach is that a data point o is an outlier w.r.t. a set
of “normal" reference objects N C D if o is not located on
the hyperplane spanned by the points of V. If the objects
in NV and o itself are projected on the (arbitrarily oriented)
subspace perpendicular to the hyperplane spanned by the
objects in /N, we can observe that the objects in N exhibit a
high density in that subspace whereas o is considerably far
apart from these objects. This idea is visualized in Figure
1(b). Thus, we consider a set of reference objects N for an
object o in order to evaluate the outlier degree of o w.r.t.
N similar to existing local outlier detection approaches.
However, fundamentally different to existing approaches, we
do not consider the density of o and the density of the
neighbors of o in the full-dimensional space. Rather, we
determine the correlation, i.e. the hyperplane, defined by
the neighbors of o and evaluate the deviation of o to its
neighbors in the subspace perpendicular to that hyperplane.
This procedure measures how good o fits to this correlation.
The motivating idea for this approach is the assumption
of possible dependencies among different attributes [35].
Different mechanisms that have generated the data will then
most likely exhibit also different sets of dependencies among
attributes. Eventually, these dependencies are also interesting
themselves in order to grasp possible underlying mecha-
nisms, since those mechanisms are presumably unknown a
priori and local.

In the following, we first introduce a concept to describe
local correlation models (Section III-B) which are used to
determine our outlier scores. In Section III-C we discuss how
to obtain a useful outlier score from the model. We discuss
the choice of the local reference set N in Section III-D
and present a method to derive an explanation for the found
outliers in Section III-E. Finally, a short description of the
outlier detection algorithm and a discussion of its properties
completes this Section (Section III-F).

B. Local Correlation Models

Correlations in 2 dimensions are commonly measured
using Pearson correlation and more generally by using
covariance. To abstract this to arbitrary dimensionality, it
is common to use the covariance matrix X n of N, where
oi; = Cov(X;,X;) for attributes X; and X;. Prime
examples are Mahalanobis distance which is defined as:

(e, ) = (@ = p) "= (@ = )

and Principal Component Analysis (PCA), which decom-
poses the covariance matrix into a rotation matrix V' con-
taining the eigenvectors and a diagonal matrix A containing
the associated eigenvalues in descending order such that

VAV =%

Using this decomposition yields the following formulation
of Mahalanobis distance of = from mean u:

dar(w, ) =/ (0 = TVAY A — p)

The eigenvalues A in A correspond to the variances along
the individual eigenvectors and sum up to the total variance
of the original data, Var(N). If a diagnonal matrix € is
defined using w; := 1/1/\; = A, 2, then QQ = A~1. Since
V is a rotation matrix, V! = V7 and since Q is a diagonal
matrix, Q = Q7 therefore

dui(e,10) == /(@ = ) TVTTQTQY @ — p)

=@V (@ — )T (@~ )
= L@V (z ~ )

As we can see from this (well-known) decomposition, Ma-
halanobis distance is closely related to Euclidean norm Lo,
weighted by the eigenvalues along the principal components.

The eigenvectors in V' describe the primary axes of the
data set, ordered with decreasing eigenvalues (variance).
If there is a strong correlation in the data set, the first
eigenvectors will be directed along this variance, while the
remaining eigenvectors are orthogonal and can be seen as
describing the deviation from the data set. For our local
correlation model, we want to exploit this property. By
replacing Q with Qs (6 < d) using

) 0 iff i <§
Ws,i = O
wi=A; 2 iffi>0
we obtain distances that do not take the first § projected

dimensions into account. Assuming that the local data is ¢§
dimensional,

des == Lo(QsV ™ a — p) )

is therefore a good measure of deviation from the local
correlation. We call this § the correlation dimensionality
of N. The correlation dimensionality is closely related
to the intrinsic dimensionality of the data distribution. If,
for instance, the points in N are located near a common
line, the correlation dimensionality of these points will be
approximately 1. The difficult part is to determine this
correlation dimensionality d. In [36] the authors propose to
use a threshold «, and consider those dimensions such that
they explain the fraction « of the total variance:

5

argming Z Ai > aVar(N)
i=1
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Figure 2. Illustration of the correlation dimension and the distance of an
object o to a hyperplane H .

where @ = 85% showed good performance. However,
this is a rather crude heuristic. In particular, there may
be more than one correlation (of different dimensionality)
present in the same set. A weaker one-dimensional (linear)
correlation can be embedded within a higher dimensional
manifold. Therefore, using a threshold may not necessarily
be adequate. Additionally, experiments have shown that even
in uncorrelated data, in particular when the sample size is
low and the dimensionality is high, there will be a significant
difference in the eigenvalues that may result in an incorrect
dimensionality. In an extreme case, when |N| < d there can
obviously be at most |[N| — 1 non-zero eigenvalues.

These ideas are illustrated in Figure 2. Figure 2(a) shows
a set of points N that span a correlation hyperplane H
of correlation dimensionality 1 corresponding to a (perfect)
line. One eigenvector (v;) already explains the total variance
of N. The projection to the first eigenvector describes the
position of the object within the subspace, while the projec-
tions on the other eigenvectors describe the deviation from
the subspace. Figure 2(b) shows a set of points N that span
a correlation hyperplane H of correlation dimensionality 2
corresponding to a (perfect) plane. Here, two eigenvectors
are needed to represent the position of the object, while the
third would determine the deviation.

Let us note that in the displayed examples the correlations
are perfect, i.e. there is no deviation from the hyperplane but

all points within the set perfectly fit to the hyperplane. In
real-world data sets, this is obviously a rather unrealistic
scenario. The points will most likely deviate from the
(idealized) hyperplane. However, for a known correlation
dimensionality 6 we can measure the deviation from the
correlation using Equation 1. It may seem a bit counter
intuitive to use the last vectors of the PCA result. The reason
is that the first (high variance) vectors will describe the
extend of the correlation hyperplane, while the orthogonal
(low variance) vectors describe the deviation, which we are
interested in here. This is visualized in Figure 2(c), where
the distance of an object o to a hyperplane Hy is clearly
to be measured orthogonally to the hyperplane. Note that
we do not explicitly compute or use the hyperplane Hy in
the following, but it is implicitly encoded in the distance
function.

In the first components (those spanning the subspace) the
data may be arbitrarily distributed. The remaining compo-
nents, however, seem to contain errors, which we can intu-
itively assume to follow approximately a normal distribution
if they are indeed not relevant.

The projection onto the last d — J§ eigenvectors also
provides a very useful tool for evaluating the outliers found:
it is the difference vector between the true object location
and the idealized position the object was expected to be at,
which can easily be used as explanation for the outlierness
of an object, which we will use in Section III-E.

C. Correlation Outlier Probability

Even if we know the appropriate correlation dimension-
ality ¢, the raw distances are not well suited for outlier
detection. A key improvement of LOF [13] over preceding
outlier detection methods such as the method of Knorr and
Ng [6] was to compare the distances associated with one
object to the distances of neighbor objects.

LoOP [18] is a variation of LOF that uses a local statistical
density estimation to become less sensitive to the choice of
the size of the neighborhood. By using normalization and
regularization, the outlier scores become also interpretable
as probabilities. A general framework for regularization of
arbitrary methods is discussed in [37].

Here, it is not reasonable to use the distance for density
estimation like in LOF, but instead we can assume that
the error distances correspond to a d — ¢ dimensional
normal distribution. After rescaling the data with Qg, we
can even assume the individual dimensions to be approx-
imately independent and identically distributed (i.i.d.), i.e.
Visswivl (x — p) ~ N(0,1). Then the deviation d g
however is x(d — ¢) distributed, as it is:
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For convenience and simpler computations, we can also look
at the squared distances, which then are x?(d—4) distributed
(a special case of the I' distribution), i.e.

de,5(z, p)* ~ x*(d — 9) 2

d—§
NF<T72) (3)

To improve accuracy, we can also try to fit a Gamma
distribution to the observed squared distances, instead of
relying on the data to be exactly x? distributed. We used the
maximum likelihood estimation by [38], but only applied it
to the 85% closest points, to avoid outliers from influencing
the parameter estimation.

For these distributions, the cumulative density function
(CDF) measures how many objects are expected to be closer
to the mean than the given distance. This is a very intuitive
value, ranging from 0 to 1, representing the probability, that
a random generated object has a smaller distance than the
observed instance.

At this point, we can now define the Correlation Outlier
Score by taking the maximal unlikely deviation, and this
way implicitly choosing the correlation dimensionality 0.

Definition 1 (Correlation Outlier Score):

Formally, the Correlation Outlier Score is defined as

COS(o) := m(?xcdfp (dg,s(x — p)) 4)

Note that the exact shape of the I' distribution depends on
the dimensionality § — d, and for improved results can be
estimated from the observed distances (for each 9).

While this value can already be seen as an “outlier
probability” as suggested by [37], it is not yet entirely
intuitive. Obviously, 10% of objects are expected to have a
probability higher than 90% and 1% higher than 99%. This
linear behaviour of the score does not align well with the
intuitive use, where we would expect objects with a score of
more than 50% to be more likely outliers than inliers, and
this should be a much more rare occurrence than 50%.

To obtain this more intuitive probability, we adjust the
score in the style of hypothesis testing and compare the
hypothesis that the object is normally distributed to the
alternate hypothesis of the object coming from an arbitrary
different distribution. Note that this is not a proper statistical
test, but only a best effort to make the score easy to interpret
for humans. Assuming a true outlier rate of ¢, an object o

with COS(0) = 1 — ¢ should have intuitively an outlier
probability of 50%, as there are expected to be as many
outliers as normal distributed objects with an equal or higher
distance. For normalization we propose to use the formula:
g 1-p)

w+p
which rescales the score to norm(0, ¢) = 1, norm(1, ¢) = 0.
As normalization constant we used ¢ = 0.1%, but for large
data sets it may be appropriate to lower this value to decrease
sensitivity.

Definition 2 (Correlation Outlier Probability):
Let N denote a local set of reference objects. The correlation
outlier probability of o € D w.r.t. N and an assumed outlier
rate ¢, denoted by COPy (0, ¢), is defined as

COPy (0, ¢) := norm(1 — COS(0), ¢)

norm(p, ¢) =

The role of ¢ is to make the scores more intuitive and usable.
As a final remark, note that we did not exclude § = 0. In
this case, no correlation was detected and all dimensions are
treated as noise dimensions. Our method then degenerates
to a full-dimensional method, and (as we will see in the
experimental section) is well able to handle this.

D. Choosing a Reference Set

So far, we have not yet discussed how to choose the
reference set N w.r.t. which the correlation outlier prob-
ability COP(0) of an object o € D is determined. As
discussed above, we assume an unknown number of different
generating mechanisms for the normal instances, thus, we
argue to use a local rather than a global approach. In fact,
we use the k-nearest neighbors (KNNs) of o for some input
parameter k as a reference set, i.e. those k (or more in case
of ties) objects in D having the smallest distance to o. In-
tuitively, £ determines a threshold for the minimum number
of points necessary to determine a significant mechanism. In
addition, k& should be large enough to span a ¢ dimensional
hyperplane, e.g. £ > 3 - d as suggested in [39]. On the
other hand, k& should not be chosen too high, because then
it is likely that /N contains points that are generated by
different mechanisms themselves and PCA cannot detect a
meaningful correlation hyperplane.

In order to obtain the principal components in a more
stable and robust way (as we expect the presence of outliers),
we experimented with two methods. The first is Robust PCA
[39] (RPCA) using the suggested weight function 1 — erf to
compute a weighted covariance matrix. Secondly, we applied
a RANSAC [40] variation during computing the covariance
matrix, with a threshold of d%; < quantilex( d)(0.9) to obtain
a consensus covariance matrix. RPCA comes at little extra
cost, as the weights are computed from the already known
distances. RANSAC PCA scales much more badly with
dimensionality, as it performs many iterations of PCA, which
is O(d?) in complexity and contributes significantly to the
overall complexity.



algorithm computeCOP

for each o € D do:
compute Ny (o) the k-nearest neighbors of o;
determine ¥, (,), V; A using robust PCA;
for each § < d do:
compute deviation from é-dim hyperplane;
estimate deviation distribution via T" or x?;
compute COS y, (,)(0) according to Definition 1;
if deviation > maximum deviation then:
update maximum deviation score;
store associated error vector;
end if
end for
compute COP y, (o) (0) according to Definition 2;
end for

Figure 3. Computing the COP.

E. Explaining and Interpreting Outliers

Obviously, it would also be interesting for the user not
only to retrieve outliers but also to obtain an interpretation
and explanation why objects are considered outliers. As
indicated above, we can utilize our modelling of correlation
hyperplanes not only to derive outliers, but also to derive a
quantitative model that explains the correlation w.r.t. which
an outlier has been identified as an outlier. The outlier expla-
nation generated by COP consists of two main components:
the error vector which indicates the error estimated for the
object, pointing to the expected position of the object, and
the actual outlier score, which indicates how much more
likely the outlier is to come from a different (i.e., outlier)
mechanism as opposed to being just a rare object from the
same mechanism that generated V.

E Algorithm

With the concepts described in the previous subsections,
we are now able to evaluate outliers by considering local
correlations in the data and derive a model for each outlier
o that explains why o is considered an outlier quantitatively
by means of an equation system. An efficient algorithm
for computing the outlier probability of all objects o € D
is given in Figure 3. The only input parameter is k, the
number of nearest neighbors that are included into Ny(o),
which has already been discussed above. The algorithm
computes the k-nearest neighbors Nj (o) of each object
o which requires O(n?) time using a sequential scan but
can be supported by any well-established index structure
reducing the runtime to O(n-logn) on average. In addition,
for each object o the local correlation is computed using
PCA, which requires O(k - d® + d®) time. The inner loop
includes matrix multiplications, but is O(d®) overall. In
general, £k € O(d) and k < n, so the overall runtime
complexity is O(n? - d®) without index and O(nlogn - d?)
when using a spatial index for nearest neighbor search. With
RANSAC-PCA, the number of iterations is significant and
increases the runtime linearly by a factor of O(i) where
i>d.

IV. EXPERIMENTS

We compared COP to the local outlier factor (LOF)
[13], the local correlation integral (LOCI) [16], and local
outlier probabilities (LoOP) [18]. These methods consider
full-dimensional densities around points and their neighbors.
We have extended LOCI slightly to turn it into a ranking
outlier detection scheme by using the k, value at which
the point would turn into an outlier as rank. LOF and
LOCI are probably among the most prominent and well-
known outlier detection algorithms. All competitors have
been implemented within in the unified framework ELKI
[41], where also our new method COP is available.

A. Accuracy

As a baseline experiment, we generated 1000 objects
that are standard normal distributed in 2 dimensions. There
are no correlations in this data set and no true outliers,
only rare objects from the normal distribution. Figure 4
visualizes the result for & = 20, with the colors assigned
by the object score. As we can see, only a few objects
score higher than 0.1. A few objects that deviate more than
3 standard deviations were given a high score over 0.5,
while the remaining objects scored close to 0. Despite the
method being designed to detect correlations, it works very
well with this baseline approach. LOF is detecting similar
outliers, but none reaches the suggested threshold of 3, and
there is an almost linear progression with the outlier scores
on the outside of the distribution. The reason is that LOF
was designed with uniform density in mind. LOCI has big
problems with this data set, due to the fluctuations inside
the distribution. This can be seen as an issue of overfitting:
for many objects it will find a radius where the object has a
low local density compared to neighbor objects. We first
expected an implementation error, but if you inspect the
data closely, each of these objects can indeed be seen as
a local outlier at the particular radius. The results of the
approximate variant alLOCI [16] are slightly better, albeit it
still detects only outliers in sparse areas at the center of the
normal distribution. Similar to LOF, LOCI assumes that the
inliers form a uniformly dense region, which does not hold
for this data set. So even on this basic and uncorrelated test
set, COP outperforms LOF and LOCI with respect to quality
and usability of the scores.

As second toy example, we generated points along a
sinus curve (with low variance normal distributed error)
along with a few obvious outliers. Again we show the top
scores for COP and LOF in Figure 5. As expected, LOF
performs very well at detecting the obvious outliers, but fails
to detect outliers close to the sinus curve. If the threshold
is set too low, it starts detecting outliers inside the curve.
The main motivation for this example is to see how well
COP works in the presence of non-linear correlations. It
handles this situation surprisingly well: Many non-linear
correlations behave just like linear correlations in a small
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(a) COP red > 0.1, yellow > 0.5, blue > 0.9

Figure 4.

enough neighborhood and the error by modelling them with
a linear approximation is not significant for outlier detection.
The scores produced by COP are very reasonable — objects
with a score larger than 0.5 (colored blue and green in
Figure 5(a)) can safely be considered outliers. Objects with a
score of 0.1—0.5 may still be worth further investigation, and
even objects with a score of just 0.01 are on the fringe of the
actual data distribution. Similar to LOF, LOCI (Figure 5(c))
was able to detect the obvious outliers, and even some of
the outliers nearby the sinus curve, but LOCI reacts much
more sensitive to fluctuations within the cluster, similar to
the observations in the previous example. Additionally, in
Figure 5(d) we visualize the error vectors produced by COP,
weighted with their outlier probability. Clearly, these vectors
fit the intuitition of measuring the divergence from a local
correlation as they point to a nearby location on the curve.
Only for the outlier at approximately 0.9, 0.5 the vector is
suboptimal. This object has 25% outliers in its 20 nearest
neighbors, so the robust PCA did not perform that well.

However, COP also has its limitations. It uses a well
defined outlier model, based on the deviation of a local trend.
Classic density-based outliers will not necessarily have such
a trend in their vincinity. Figure 6 visualizes such a situation.
While COP does very well in recognizing outliers near the
dominant correlation, the object marked as O (a typical
density-based outlier) is not detected, because the 20 nearest
neighbors (indicated with a green background) do not show
a strong correlation, and as such the object is by definition
not a correlation outlier. Other algorithms such as LOF
might also have problems detecting some of these outliers,
as the direct neighbors do also have a similar density. Only
a method based on global density will be able to detect this
outlier. This example shows the need to use multiple types of
outlier detection models and methods: global density, local
density and correlation outlier detection are different kinds
of outliers, best detected by different approaches.

(b) LOF red > 1.1, yellow > 1.2, blue > 1.5,

(c) LOCI red > 1.5, yellow > 2, blue > 3,
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Scores on a sinus distribution with low noise and a few strong

B. Scalability

We compared the scalability of COP with LOF, with-
out index acceleration. We did not include LOCI in the
benchmarks, since we were using the exact version for the
other comparisons which is known to scale very poorly. A
comparison with the approximate version aLOCI would have
been possible. However, this would not have produced novel
insights since alLOCI scales similar as LOF.

The runtime required to compute the COP value for
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Figure 6.  Strengths and limitations of COP: finds outliers close to the
correlation, but does not recognize density outliers.
red > 0.1, yellow > 0.99. Green indicates the 20 nearest neighbors of O

all database objects w.r.t. increasing database size n in
comparison to LOF is shown in Figure 7(a). Both ap-
proaches scale super-linear as expected. Let us note that
we used materialized neighborhoods for LOF so that each
neighborhood needs to be computed only once similar to
COP. However, this implies a considerably higher storage
overhead of LOF over COP. We also examined the scalability
of our novel outlier detection approach compared to LOF
w.r.t. the dimensionality d of the data points. The results
shown in Figure 7(b) suggest a linear scalability for LOF
and a super-linear growth for COP as expected. The impact
of the parameter k (minPts in LOF) on the runtime of the
algorithm is not very importat, as both methods scale almost
constant w.r.t. k, as it can be seen in Figure 7(c), supporting
our analysis that the inner loop of COP is O(k-d? +d?3). As
such, the methods are linear in k, but the iteration over the
k neighbors is comparably cheap as opposed to the matrix
inversion and neighbor search.

Unlike the pure scalability suggests, COP will not work
with arbitrarily high-dimensional data, because PCA will not
work very well with high-dimensional data. Not only does

it scale with O(d®), but it also requires a significantly larger
neighborhood with increasing dimensionality, which at some
point will no longer be truly local. Furthermore, it will likely
be affected by the curse of dimensionality. It is however
very reasonable to combine COP with methods that produce
subspace candidates to test, such as HiCS [27].

C. Results on Real-world Data

We used COP to find outliers in a data set containing 15
statistical measures for 413 former and current NBA players
obtained from the NBA website’>. We removed players with
only a few games played, retaining 357 players.

Table I(a) depicts the top outliers according to COP, along
with a trend indication of the error vector. The actual 15-
dimensional error vectors are not as easy to interpret as the
general trend indication. The data set is quite diverse with
various types of outliers. Seven players scored the maximum
score of 1.0 is this model, and a large number of records
scored just slightly less. The key benefit here actually is to
have this error model that indicates how a particular record
is unusual. We will discuss the errors found by COP for
some of the top players, because there are some interesting
situations here.

Note that the error vectors point to the expected value.
Eddy Curry for example, was unusually successfull at reg-
ular and 3 point throws and overall points, but not in free
throws. Indeed in the data set he is given a 100% success
rate for 3 point throws, but only 64.8% on free throws. Bruce
Bowen played 661 games and 28.2 minutes on average, but
scores only on 56.8% of free throws. Dennis Rodman is an
exceptional rebounder, his blocks per game score is not low,
unless compared to his number of rebounds. Antoine Carr
is his very opposite, scoring low on rebounds and high on
blocks and fouls. He played a lot and is a good shooter.
Steve Kerr is an exceptional fair player and also extremely
good at shooting. He played 910 games, but only 30 in the
starting team. Steve Scheffler only played 5.3 minutes on
average, despite having not bad scoring values. The most

Zhttp://www.nba.com



Table 1
RESULTS ON REAL-WORLD DATA

(a) Top outliers found by COP in NBA data set.

Player | COP_|Error vector trend

Eddy 1.0 |-3PSuccess -Success -PointsPG FTSuccess -FoulsPG

Curry OffRebounds -DefRebounds TurnoverPG AssistPG
StealsPG

Bruce 1.0 |FTSuccess -StartTeam -MinutesPG TurnoverPG

Bowen OffRebounds

Dennis 1.0 |-OffRebounds -SumRebounds -DefRebounds

Rodman FTSuccess BlocksPG PointsPG -Success
-GamesPlayed

Antoine 1.0 |-GamesPlayed -FoulsPG -BlocksPG SumRebounds

Carr OffRebounds -FTSuccess DefRebounds -Success

Steve 1.0 |FoulsPG -GamesPlayed -Success -3PSuccess

Kerr TurnoverPG -FTSuccess SumRebounds
OffRebounds DefRebounds

Steve 1.0 |MinutesPG -Success FoulsPG TurnoverPG

Scheffler SumRebounds DefRebounds PointsPG StealsPG
BlocksPG

Danny 1.0 |GamesPlayed -FoulsPG -Success -StealsPG

Manning -TurnoverPG

Allen 0.999997|-TurnoverPG -StealsPG -PointsPG -MinutesPG
Iverson -AssistPG FoulsPG -StartTeam
John 0.999989|-AssistPG -StartTeam -GamesPlayed -StealsPG

Stockton DefRebounds -TurnoverPG SumRebounds -Success
PointsPG BlocksPG
Andrei  {0.999891|-BlocksPG -StealsPG FoulsPG GamesPlayed

Kirilenko StartTeam -AssistPG
Avery  [0.999789(3PSuccess -AssistPG -StartTeam -GamesPlayed
Johnson FTSuccess FoulsPG -Success SumRebounds

DefRebounds OffRebounds
Dirk 0.999678|-DefRebounds -SumRebounds -PointsPG

Nowitzki -MinutesPG -FTSuccess OffRebounds -BlocksPG
-3PSuccess

Charlie  {0.999010[{TurnoverPG -MinutesPG -StealsPG

Bell

Jason 0.998700|-AssistPG -TurnoverPG -StealsPG -SumRebounds

Kidd -OffRebounds 3PSuccess -DefRebounds Success

-StartTeam FoulsPG -GamesPlayed

Shaquille [0.995704|-BlocksPG -PointsPG -SumRebounds -OffRebounds
O’Neal FTSuccess -Success -DefRebounds -TurnoverPG
-StartTeam 3PSuccess -MinutesPG -FoulsPG
-GamesPlayed

(b) ALOI results.
Method | cop | LOF | LoOP | aLOCI
ROC AUC Score | 0.82186 | 0.73131 | 0.77408 | 0.7112

interesting outlier however is Danny Manning. While all his
individual statistics are well within the range of the data set,
COP clearly indicated this player should have played more
games. Upon closer investigation we noticed that while he
is credited for playing 83 games total, he is also credited
for being in the starting team in 398 games — obviously an
error occurred during data entry of this data set.

We also applied LOF on that data set. Even when trying
to optimize the parameter minPts, LOF could not find
significant outliers. In all cases, the top outlier achieved a
LOF value of below 1.8. This indicates that the objects in
that data set exhibit a rather uniform density and outliers
like the measurement error can only be detected when
considering correlations as implemented by COP. The top
outliers found by LOCI were players that had played next
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Figure 8. ROC curves for ALOI data set

to no games. The highest score achieved was 2.1, which
would not have been considered an outlier by LOCI (the
suggested significance value is 3). This difference to the
results published in [16] is probably due to our NBA data
set covering more seasons and players than their version.

As second real-world data set, we used the Amsterdam
Library of Object Images (ALOI) [42], a collection of
110250 images from 1000 different objects in various light
conditions. We downsampled some objects to obtain rare
classes, so that 50000 images remain, 1508 of which are
from rare objects. We extracted Haralick texture features
[43] from the images, obtaining a 14 dimensional vector
space. This is a rather challenging data set, and none of the
methods evaluated performed excellent on this data set.

In Figure 8 we visualize the ROC curves for different
algorithms: the new method COP along with the well-
known local density-based outlier detection method LOF, the
variation LoOP, and aLOCI. COP clearly offers an improved
detection performance compare to all three methods. The
area under curve (AUC) values are given in Table I(b).

V. CONCLUSIONS

We proposed a local model that takes correlations among
varying subsets of attributes into account in order to find out-
liers in arbitrarily oriented subspaces. Our algorithm assigns
to a point a score of being an outlier w.r.t. a set of reference
points in the local neighborhood. An important contribution
of COP is to not only produce an outlier score, but also
to generate an explanation of how the outlier diverts from
the norm. This significantly helps analysis of the outliers by
a domain expert. The different abilities of COP compared
to LOF and LOCI as prototypes of classical local outlier
detection algorithms have been demonstrated on synthetic
and real-world data. COP provides a new paradigm for
outlier detection that exhibits rather different characteristics
orthogonal to established methods. As a consequence, COP
does not necessarily compete with existing outlier detection
methods but rather complements them, and is best used in
parallel with classic density-based outlier detection methods,
as they detect different types of outliers.
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