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 Beyer et al. (1999): distances to near and to far neighbors
become more and more similar with increasing data
dimensionality (loss of relative contrast or concentration

effect of distances):
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 valid for a broad range of data distributions
* but only within one single distribution
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e Bennett et al. (1999): nearest-neighbor queries are still
meaningful, if the search is limited to the same cluster and if
the clusters are well separated.

o Separation of clusters relates to relevant attributes (helpful to
discern between clusters) as opposed to irrelevant attributes
(indistinguishable distribution of attribute values for different
clusters). 1
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 Redundant attributes: dependencies/correlations among
attributes
— can result in lower intrinsic dimensionality of a data set
— bad discrimination of distances can still be a problem
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* there are other effects of the “curse of dimensionality”

 we mainly aim at distinguishing these effects:
— concentration effect within distributions
— impediment of similarity search by irrelevant attributes
— partly: impact of redundant/correlated attributes

e as aremedy for similarity assessment in high dimensional
data, to use shared nearest neighbor (SNN) information has
been proposed but never evaluated systematically

* here: evaluation of the effects on primary distances
(Manhattan, Euclidean, fractional L, (L, ¢ and L), cosine)
and secondary distances (SNN)
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e secondary distances are defined on top of primary distances

« shared nearest neighbor (SNN) information:

— assess the set of s nearest neighbors for two objects x and y in terms
of some primary distance (Euclidean, Manhattan, cosine...)

— derive overlap of neighbors (common objects in the NN of x and y)
SNN,(X, y) =[NN;(x) "NN,(y)

— similarity measure QCNIN (
SlmCOSS(X1 y) _ Vs

I\’

Y )
Y)

cosine of the angle between membership vectors for NN(x) and NN(y)

 SNN has been used before in mining high-dimensional data,
but alleged quality improvement has never been evaluated
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e distance measures based on SNN:
dinv (X, y) =1-simcos.(X, Y)

dacos, (X, y) = arccos(simcos, (X, Y))
din (X, y) =—In(simcos (X, Y))

— dinv: linear inversion
— dacos penalizes slightly suboptimal similarities more strongly

— dIn more tolerant for relatively high similarity values but approaches
Infinity for very low similarity values

o for assessment of ranking quality, these formulations are
equivalent as the ranking is unaffected

« only dacos is a metric (if the underlying primary distance is a
metric)
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 Atrtificial data sets: n = 10.000 items, ¢ = 100 clusters, up to d = 640
dimensions, cluster sizes randomly determined.

* Relevant attribute values normally distributed, irrelevant attribute values
uniformly distributed.

 Data sets:
— All-Relevant; all dimensions relevant for all clusters

— 10-Relevant: first 10 dimensions are relevant for all clusters, the remaining dimensions
are irrelevant

— Cyc-Relevant: ith attribute is relevant for the jth cluster when i mod c = j, otherwise
irrelevant (here: ¢ = 10, n = 1000)

— Half-Relevant: for each cluster, an attribute is chosen to be relevant with probability
0.5, and irrelevant otherwise

— All-Dependent: derived from All-Relevant introducing correlations among attributes
XeAllDependent, Ye AllRelevant: X, =Y, (1 <i<10), X, =%2 (X_,,+Y) (i > 10)

— 10-Dependent: derived from 10-Relevant introducing correlations among attributes
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Data sets show properties of the “curse of dimensio
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Data sets show properties of the “curse of dimensionality”

Distance (normalized tg [, 640)
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Data sets show properties of the “curse of dimensionality”
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« Using each item in turn as a query, neighborhood ranking reported in
terms of the Area under curve (AUC) of the Receiver Operating

Characteristic (ROC) !
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ROC AUC average
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Euclidean distance
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Euclidean distance
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SNN based on Euclidean

Observations
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SNN based on Euclidean
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SNN based on Euclidean
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some real data sets: distributions of Euclid_ean distances
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some real data sets: distributions of SNN distances (Euclidean)
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some real data sets: ranking quality
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 The curse of dimensionality does not count in general as an
excuse for everything — depends on the number and nature
of distributions in a data set

e the nature of each particular problem needs to be studied in
Its own — part of the curse: it's always different than expected

 SNN information can improve neighborhood ranking for even
very low quality of neighborhood queries

— if the primary distance already performs good, the improvement by SNN in
many cases seems actually to be more significant

— open questions:

» good choice of neighborhood size s: relationship between s and size of natural
clusters?

» kNN query based on SNN.: relationship between k and s?
supplementary material:
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