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Abstract

Clustering refers to the task of identifying groups or clusters in a data set. In
density-based clustering, a cluster is a set of data objects spread in the data
space over a contiguous region of high density of objects. Density-based clus-
ters are separated from each other by contiguous regions of low density of
objects. Data objects located in low-density regions are typically considered
noise or outliers.

Introduction

Clustering is the problem of finding a set of groups of similar objects within a
data set while keeping dissimilar objects separated in different groups or the
group of noise. In general, clustering is seen as an unsupervised learning
task. Given the data as a set of objects from a given data space D ¢ S and
a dissimilarity-function dis : S x & — R¢, the task is to learn a meaningful
grouping of the data. Often, the data set is a set of d-dimensional real-valued
points, i.e., D ¢ S = R%, which can be seen as a sample from some unknown



probability density p(z), with dis as the Euclidean or some other form of dis-
tance. The meaning of within-group similarity and between-group dissimilarity
is different for different families of clustering approaches. From a procedural
point of view, many clustering methods seek a partitioning of the data set into
a predefined number k of groups where the sum of (squared) pairwise dissim-
ilarities between all cluster objects or the sum of (squared) dissimilarities of
all cluster objects w.r.t. some cluster representative (e.g. the mean value) are
minimized and the respective values between different clusters are maximized,
given some dissimilarity function dis. These assumptions typically result in
clusters of convex (or, ideally, spherical) shape (e.g. [28]). From a statistical
point of view, such methods correspond to a parametric approach where the
unknown density p(z) of the data is assumed to be a mixture of k densities
p;(x), each corresponding to one of the k groups in the data. The p;(z) are as-
sumed to belong to some parametric family (e.g., Gaussian distributions) with
unknown parameters. The parameters are then to be estimated based on the
given sample (the data set) (e.g. [11]). In contrast, density-based clustering is
a non-parametric approach where the clusters are considered to be high den-
sity areas of the density p(z). Density-based clustering methods do not require
the number of clusters as input parameters, nor do they make assumptions
concerning the underlying density p(x) or the variance within the clusters that
may exist in the data set. As a consequence, density-based clusters are not
necessarily groups of points with a low pairwise within-cluster dissimilarity as
measured by a dissimilarity function dis and, thus, do not necessarily have a
convex shape but can be arbitrarily shaped in the data space. Intuitively, a
density-based cluster is a set of data objects spread in the data space over
a contiguous region of high density of objects, separated from other density-
based clusters by contiguous regions of low density of objects.

In this article, the intuition motivating the density-based definition of clusters is
presented along with an overview of statistical methods and efficient algorithms
applicable to large databases. Finding suitable density-thresholds is an inher-
ently difficult problem, alleviation has been proposed by hierarchical methods.
Finally, adaptations to different specialized problem settings are discussed.

Background and Motivation

Consider the distribution of data points in Figure 1. Density-based clusters can be
imagined as sets of points resulting from a “cut” through (an estimation of) the proba-
bility density function for the data at a certain density level: each cut induces separate
connected regions in the feature space where the probability density is higher than
the cut value; each such region corresponds to a cluster containing all the data points
falling into this region. If the level is chosen too low, different clusters will be merged
to a single cluster (Figures 1(c) and 1(d)). If the density level is chosen too high, clus-
ters exhibiting a lower density will be lost (Figures 1(g) and 1(h)). In this data set, a
good density level can be defined to separate the three original clusters relatively well
(Figures 1(e) and 1(f)).
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(a) Data set (b) Probability density function of the data

(c) Two clusters merged (d) Low density level

(e) Three clusters separated (f) Good density level

L2

(g) One cluster becomes noise (h) High density level

Figure 1: Density-distributions of data points and density-based clusters for different
density levels. Different colors indicate different clusters or noise.
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(a) Topographic information (b) Area of selected minimum altitude

Figure 2: Maunga Whau Volcano (Mt Eden)

Sometimes density-based clusters are also referred to as “natural clusters” since they
are particularly suitable for certain nature inspired applications. For example, in spatial
data, clusters of points in the space may form along natural structures such as rivers,
roads, seismic faults, etc. Figure 2(a) depicts topographic information for Auckland’s
Maunga Whau Volcano (Mt. Eden). Selecting areas above a certain altitude relates to
density-based clustering provided a density level is selected accordingly (Figure 2(b)).

Another natural motivation is often found in zoology [9, 17]. Species diverge, as is
commonly assumed, from some common ancestor in different directions as adaptations
to different forces of selection. Hence, zoologists define families of different species,
where the members probably exhibit not an extraordinary high pairwise similarity to
all other members but exhibit a certain similarity to at least some other member of
the family [39, 16]. Also, geometrically, evolutionary development can be seen as a
tree of paths through the space spanned by the variables describing the phenotypes of
organisms. Clusters of such geometry closely resemble the problem described by the
density-based clustering approach.

An example for the geometry of variations can be given based on Fisher’s Iris data set
[15] (well known as an example data set in the domain of classification). It comprises
four descriptors of the Iris flower, namely length and width of petals and sepals, respec-
tively. These descriptors are collected for individual flowers of three different species.
While the original purpose of these data was to study linear separability, it can serve
here to illustrate the typical properties of natural (biological) clusters. The scatter plot
given in Figure 3 shows that the occurring natural clusters are typically not spherical in
shape, since the extreme individuals within each species are not as similar to each other
as they are perhaps to some instance of another species, yet there can be found a chain
of similar individuals more or less connecting the individuals within each species. (For
another well-known example with discussion see Text-Fig. 4 in [34].)

Statistical Intuition of Density-Based Clustering

An early computational technique following the given intuition of “natural clusters”
has become well-known as single-linkage clustering [39]. A hierarchical method has
been described in [41]. The original approach of single-linkage was to group all ob-
jects below a given distance threshold at a first level, then increase the threshold and
repeat the procedure until all objects belong to a group. Though more efficient meth-
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Figure 3: Iris Data (green: I. setosa, red: I. versicolor, blue: I. virginica)



ods have been proposed later [38], single-linkage has been criticized early for the so-
called “chaining-effect” (or “single-link effect”) [25, 22]. This effect can lead to the
undesirable connectivity of different clusters by the existence of a “chain” of single
objects between two clusters. Consequently, Wishart proposed a method to remove
noise objects (causing the chaining-effect) before clustering the remaining points in a
single-linkage manner [42]. This proposal was probably the first approach of comput-
ing a density-based clustering. His algorithm for one level mode analysis consists of
Six steps:

1. Selection of a distance threshold r, and a frequency threshold &.
2. Computation of the triangular similarity matrix of all inter-point distances.

3. Evaluation of the frequency k; of each data point x;. The frequency is the number
of points located within a distance r of point x;, hence it is a measure of the
density.

4. Removal of the non-dense (‘“noise”) points (where k; < k).
5. Clustering of the remaining points by single-linkage.

6. Finally, non-dense points can be allocated to a suitable cluster according to some
criterion.

“Some criterion” remains intentionally vague. Wishart gives as an example to include
non-dense points in the cluster containing its nearest dense point. This is certainly the
most intuitive solution, but other solutions might be possible, including to not assign
the dense points to any cluster at all. The latter would also be reasonable since the
clusters are defined as to exhibit a certain density. Including the non-dense points
weakens the relationship between cluster definition and clusters.

A more general formalization of a density-based cluster was proposed by [18]. Given
a density p(x) at each point x, a density threshold A, and links specified for some pairs
of objects, a density-contour cluster at level X is defined as a maximally connected set
of points x; such that p(z;) > A. The links between points may be specified using
the distance function dis. For example, two points can be defined as linked if the
distance between them does not exceed a threshold r. Hartigan, like Wishart, proposes
an algorithm similar to single linkage clustering that computes the maximal connected
sets of points having a density greater than the given threshold )\ in order to determine
density-contour clusters.

Both methods are based upon a similar intuition of what constitutes a cluster. The
basic assumption of this intuition is that the data set D C R? is a sample from some
unknown probability density p(x) and clusters are high density areas of this density
p(x). Finding such high density areas of p(x) usually requires two basic ingredients.
The first ingredient is a local density estimate at each point. Typically some kernel or
nearest neighbor density estimate is used for this issue [35, 31, 27, 29, 12]. The second
ingredient is a notion of connection between objects. Typically points are connected
if they are within a certain distance € from each other. Clusters are constructed as
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maximal sets of objects which are directly or transitively connected to objects whose
density exceeds some threshold A. The set {z|p(z) > A} of all high density objects is
called the density level set of p at A. Objects that are not part of such clusters are called
noise or outliers.

The various density based methods proposed in the literature (examples include [43,
10]) mainly differ in the following aspects:

1. How is the density p(x) estimated?
2. How is the notion of connectivity defined?

3. How is the algorithm for finding connected components of the induced graph
implemented and is the algorithm supported by suitable data structures to achieve
scalability even for large data sets?

In addition, for some methods a cluster consists only of objects whose density exceeds
the threshold A, while other methods also include objects with lower density into a
cluster if they are connected to at least one object with density above the threshold .

Efficient Density-based Clustering Algorithms

Beside the single-linkage algorithms of Wishart and Hartigan, other algorithms have
been proposed to compute density based clustering independently in a different re-
search community. In the context of databases and large data sets, the efficient com-
putability has come into focus and has led to algorithmic variants of computing the
density-based clustering model.

The DBSCAN [14] algorithm claims to be scalable to large databases because it allows
the use of index structures for density estimation. Given a distance threshold r and a
density threshold k (in DBSCAN the threshold is called minPts), density of a point x;
is defined, like it is done by Wishart, as the number of points k; that are within a radius
r around z;. If k; > k, the corresponding point x; is considered a core point. Two
points are considered directly connected if they have a distance of less than r. Two
points are density connected if they are connected to core points and these core points
are in turn density connected. These definitions allow to define the transitive hull of
density-connected points, forming density-based clusters.

As an illustration of this concept, points p and m, m and n, n and ¢ in Figure 4 are direct
density reachable, respectively, under minPts = 5 and the sketched . By transitivity,
also p and n or ¢ are (indirectly) density reachable, respectively. Hence p and g are
density connected via m and n.

The parameters € and minPts together define a density level. Reconsider Figure 1:
there, the clusters shown in Figures 1(c), 1(e), 1(g), respectively, have been derived
with DBSCAN and parameters ¢ = 10, minPts = 100,150,455. In this example,
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Figure 4: Density connectivity.

with a fixed value for €, the varying density level is expressed with varying values for
minPts.

A density based cluster is formalized as a maximally connected component of the set of
points that have a distance of smaller than r to some core point. Clusters may contain
so-called border points that do not have the core point property. Objects that are not
part of a cluster are noise points. In an extreme case, a cluster may only contain one
core point and the border points in its neighborhood. In some applications, introducing
a minimum number of core points per cluster through an additional parameter can
reduce the number of “spurious” clusters that would otherwise be reported.

DBSCAN computes clusters iteratively. It starts a new cluster C' with a not yet assigned
core point x by assigning all points to C that are connected to x. For determining the
connected points of a given point x of a cluster C range queries with radius r are com-
puted for each point that is newly added to C'. Each range query has a runtime complex-
ity of O(IV) when applying a sequential search, resulting in a total runtime complexity
of O(N?) in the worst case. In moderately dimensional data one could apply appro-
priate index structures such as an R*-tree to process a range query in O(log N). Then,
the runtime complexity of DBSCAN is in O(N log N). The runtime complexity for
creating such index structures is usually also in O(N log N) and, thus, does not affect
the overall runtime complexity.

DENCLUE [20] uses a kernel density estimator to define density based clusters. In
general, any density estimator can be used. Figure 5 depicts an example 2D data set
(left) and the resulting density estimation using two different kernels, a Square Wave
(uniform) kernel (top) and a Gaussian kernel (bottom). A local maximum of the over-
all density function is called a density attractor. Each point z is associated with the
density attractor that is located in the direction of maximum increase in density from
x. A density based cluster is defined as a connected component of density attractors
with their associated points whose density estimate is above a given threshold A. In
fact, the method of Wishart and DBSCAN can be seen as special cases of DENCLUE
using a uniform spherical kernel. While for Wishart’s method points that are associ-



ated by density attractors but whose density is below A are not included, these points
correspond to border points in DBSCAN and, thus, are included for DBSCAN. The
implementation of DENCLUE relies on a Gaussian kernel and a sophisticated data
structure for fast local density estimation. In particular, the data space is partitioned by
a grid. Each non-empty grid cell ¢ is mapped to a one-dimensional key. This key is
stored in a search tree along with further statistics such as number of points in ¢, point-
ers to the points in ¢, and the linear sum of the points in ¢. The search tree is used for
efficiently determining neighboring cells and local density estimates. Although propos-
ing a generalization, the authors of [20] report also a runtime speed-up of DENCLUE
over DBSCAN.

uniform kernel

Gaussian kernel

Figure 5: The impact of different kernels on the density estimation.

GDBSCAN [36] is an algorithmic framework that generalizes the notion of density
based clusters to the concept of density connected decomposition for any type of data.
This concept only requires a reflexive and symmetric neighborhood relation for any
pair of objects that represents direct connectivity, and a MinWeight predicate that eval-
uates frue for neighborhood sets of core objects and false for neighborhood sets of non-
core objects. A density connected decomposition consists of the maximally connected
components of the set of objects that are in the neighborhood set of some core object.
They can be computed with the same algorithmic schema used by the DBSCAN algo-
rithm. Examples of specializations of GDBSCAN, described in [36], include simple
forms of region growing, e.g., for clustering images, clustering geometrically extended
objects taking their intersection into account, and clustering spatial objects while taking
also non-spatial attributes into account.



Discovering Clusters of Different Densities

One of the basic problems of computing a density based clustering is to determine a
suitable density level (cf. Figure 1). This becomes especially difficult or impossible if
clusters in different regions of the data space have considerably different local densities
or clusters with different density levels are nested (i.e., there are clusters with higher
density levels within a cluster with a lower density level). Clearly, in such cases, the
clusters derived from a single density-level cannot completely describe the inherent
clustering structure of the data set.

The challenge of finding density-based clusters with very different densities in a data
set, which cannot be completely described by a single density level set, has been ad-
dressed, e.g., by [13, 32] for point data. In addition, this challenge also motivated
hierarchical algorithms to compute clusters at different density levels in one single run
[42, 18]. Since connected components from different density levels are either disjoint
or the cluster of higher density is completely contained in the cluster of lower density,
the result of such hierarchical algorithms can be represented as a tree. Other, more
recent approaches for hierarchical density based clustering include OPTICS [4] (which
is based on DBSCAN and its density estimation) and the work by Stuetzle [40]. Both
algorithms are inspired by single linkage clustering computing a Minimum Spanning
Tree of the data where edge weights represent pairwise distances. These distances are
smoothed by a density estimator in [4] called core distance. The core distance of a
point x is the smallest threshold r such that x is still considered a core object by the
DBSCAN algorithm (see above), i.e., x has still at least k£ objects in its neighborhood
with radius 7. The resulting distance that is used to construct the Minimum Spanning
Tree is called reachability distance. Taking k as input parameter for smoothing the
density estimation, the reachability distance of point x is defined relative to a reference
object y as the minimum of the core distance of y and the actual distance between x
and y. This distance is not symmetric for £ > 1 (for £ = 1 it is equivalent to the dis-
tance used for nearest-neighbor computation). Obviously, the smaller the reachability
distance of a point is the higher is the density around it. The OPTICS algorithm es-
sentially computes a walk through the Minimum Spanning Tree, the so-called cluster
order, starting at a randomly chosen point and then visiting in each step that object that
has the smallest reachability distance relative to all objects visited so far.

The output of hierarchical algorithms is not a partition of the data but a characterization
of the density structure of the data, usually a visualization of the Minimum Spanning
Tree called dendrogram. From such a characterization, clusters at different density
levels can usually be determined. In [4] a different 2D characterization is proposed for
the OPTICS algorithm called reachability plot. The order in which OPTICS visits the
points is displayed along the x-axis while the reachability distance of each point is dis-
played as a bar along the y-axis (cf. Figure 6). Valleys in this plot indicate clusters. The
deeper the valley, the higher the corresponding density-level. The relationship between
dendrograms and reachability plots is described in [37]. For k = 1 a reachability plot
can be transferred into a dendrogram and vice versa.
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Figure 6: Reachability plot for a sample 2D data set.

A discussion of hierarchical methods, different linkage-methods, and their relation to
k-means is provided in [19]. A short overview of algorithmic paradigms for non-
parametric clustering is given in [30].

The shared nearest neighbor (SNN) clustering [13] uses a similarity measure based
on the number of shared neighbors of two objects instead of a traditional distance
measure like Euclidean distance. The algorithm proposed in [13] can be considered as
an instance of the GDBSCAN framework where the neighborhood predicate is based
on SNN similarity. Using shared nearest neighbor similarity is a possibility to account
for different density levels.

DECODE [32] assumes the data is generated by different point processes and tries
to find clusters as connected regions of points whose distances to their m-th nearest
neighbor (=“core-distance” in OPTICS) are “similar”. The method determines bins
into which the m-nearest neighbor distances are classified, using a reversible jump
Markov Chain Monte Carlo strategy; m-nearest neighbor distances that fall into the
same bin are then considered similar.
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Recent Directions in Density-Based Clustering

A large number of specializations and extensions for different applications and data
types have been proposed. In the following, two examples of such specializations are
sketched: clustering high dimensional data and semi-supervised clustering.

For applications where the data points are high dimensional (sometimes, 10-20 at-
tributes are already regarded as high-dimensional data), specialized approaches for
density-based clustering have been proposed to overcome the so-called curse of di-
mensionality, i.e., a number of difficulties arising with increasing dimensionality of a
data set (many difficulties usually become apparent between 10 and 20 dimensions). A
detailed discussion on the effects of high dimensional data and the curse of dimension-
ality in the context of clustering can be found in [21, 24].

The authors of [13] claim shared nearest neighbor (SNN) clustering to be more stable
in higher dimensions than standard distance measures like L, norms. This claim has
been experimentally evaluated only recently [21]. A different approach to solve the
problems of high dimensional data spaces is to search for clusters in subspaces of
the original data space. The density-based approach has been applied successfully to
search for clusters in axis-parallel subspaces (e.g. [23, 6, 5]) and arbitrarily oriented
subspaces (e.g. [7, 2, 1]). Essentially, these approaches can be seen as special instances
of the GDBSCAN framework using different neighborhood predicates.

Semi-supervised density-based clustering approaches try to exploit information about
cluster membership, which may be available in form of class labels for a small subset
of objects. It is based on the intuition that class membership information could be used
to derive information about the density parameters that characterize different clusters,
when assuming that the labels are consistent with the density based clustering structure
of the data in the sense that objects with different labels have to be in different density
based clusters — this excludes clusters with mixed labels, but does not exclude having
more than one cluster in which objects have the same label. Two recent proposals are
[8, 26].

Conclusion

Density-based clustering has been applied successfully for cluster analysis in
many different contexts. In general, density-based clustering aims at identify-
ing clusters as areas of high point density that are separated by areas of low
point density and, thus, can be arbitrarily shaped in the data space. Several
similar formalizations have been proposed for density-based clusters in differ-
ent communities. Typically, these approaches are based on the common idea
of defining clusters as connected dense components. The approaches usually
only differ in the definition of density and connectedness. Also different algo-
rithms have been proposed in different contexts and communities for computing
density-based clusters. While most of the original approaches in statistics did
not focus on efficiency issues, successive algorithms in the data mining and
the database communities were designed for large databases. In addition, the
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problem of finding suitable density-thresholds is an inherently difficult problem,
alleviation has been proposed by hierarchical methods. Finally, several ex-
tensions and adaptations of the basic notion of density-based clustering have
been discussed recently.

Notes

The data set of topographical information on Auckland’s Maunga Whau Volcano
(Mt. Eden), based on a topographic map by Ross lhaka, (Figure 2) and the Iris
data (Figure 3) come with R [33]. Most Figures have been plotted with R (we
acknowledge the assistence of Marisa Thoma) or with ELKI [3].
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