- The Maximum Resource Bin Packing Problem.
- Joan Boyar, Leah Epstein, Lene M. Favrholdt, Jens S. Kohrt, Kim S. Larsen, Morten Monrad Pedersen, and Sanne Wøhlk.
In 15th International Symposium on Fundamentals of Computation Theory (FCT), volume 3623 of Lecture Notes in Computer Science, pages 397-408. Springer, 2005.
For the off-line variant, we require that there be an ordering of the bins, so that no item in a later bin fits in an earlier bin. We find the approximation ratios of two natural approximation algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing.
For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find the competitive ratio of various natural algorithms.
We study the general versions of the problems as well as the parameterized versions where there is an upper bound of 1/k on the item sizes, for some integer k.
- publication
- Link to the publication at the publisher's site - subscription may be required.
Text required by the publisher (if any): The final publication is available at link.springer.com.
- full version
- Link to the journal version containing all the material and proofs, some of which are usually omitted in the conference version due to space constraints.
- other publications
- Other publications by the author.